
Learning Search Strategies from Human
Demonstrations

Dissertation (2016)

Submitted to the School of Engineering, Doctoral
Program on Manufacturing Systems and Robotics

École Polytechnique Fédérale de Lausanne
(EPFL)

in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

by

Guillaume de Chambrier

Thesis Committee:

Prof. Dillenbourg Pierre, president of the jury
Prof. Aude Billard, thesis advisor
Prof. Pedro U. Lima, examiner

Dr. Thrish Nanayakkara, examiner
Dr. Mathew Magimai Dossw, examiner

Lausanne, Switzerland
August, 2016

Abstract

D
ecision making and planning with partial state information is a problem

faced by all forms of intelligent entities being either virtual, synthetic or

biological. The formulation of a problem under partial state information leads

to an exorbitant set of choices with associated probabilistic outcomes making

its resolution difficult when using traditional planning methods. Human beings

have acquired the ability of acting under uncertainty through education and self-

learning. Transferring our know-how to artificial agents and robots will make it

faster for them to learn and even improve upon us in tasks in which incomplete

knowledge is available, which is the objective of this thesis.

A large body of scientific work has focused on transferring behaviour from

humans to robots via Programming by Demonstration frameworks which fo-

cus on learning how to imitate human behaviour. Tasks such as “pick and

place”, hitting motions, and bipedal locomotion have been encoded through ei-

ther symbolic, statistical or dynamical system representations. In contrast there

has been less focus on transferring higher cognitive behaviour such as problem

solving skills and search strategies from humans to robots.

This thesis aims to model how humans reason with respect to their beliefs

and the role uncertainty plays during spatial navigation search tasks. We con-

sider for instance tasks such as localising an object in a room or connecting a

plug to a power socket in the dark, as well as any situation where the subject

has no visual information and must rely on tactile and proprioceptive infor-

mation only. We then transfer the human-inferred reasoning mechanisms to a

robot apprentice. There are many robotic application domains in which uncer-

tainty resulting from a lack of visual perception is common, such as underwater

maintenance, planetary exploration and occluded manipulation tasks. Learning

human search models and transferring them to robots is useful in such domains

and learning a search strategy from scratch would prove intractable.

A difficulty in learning humans reasoning mechanisms, in the search scenar-

ios we consider, is that the humans beliefs and sensations (haptic and tactile)

are unobservable and that they vary within and across subjects. We infer the

human sensations from either assuming kinematic relationship between tactile

information and known geometric description of the environment or by equip-

ping the human subject with a tool mounted with a force-torque sensor, whose

i

measurements are used to infer the human sensations. The actual sensations,

which are a function of either the sensor tool or kinematic-environment mea-

surements, are transformed to a binary feature vector which encodes whether

contact are present between features such as surfaces, edges and corners of the

environment.

We model the human’s beliefs by a probability density function which we up-

date through recursive Bayesian state space estimation using motion estimates,

acquired through a tracking system (the human subjects wore markers), and the

sensation estimates were obtained as described above. We make the assump-

tion that the probability density function, representing the human’s belief, is

updated by a Bayesian recursion and that this process is similar to the way in

which humans integrate information.

To model the reasoning processes of human subjects performing the search

tasks we learn a generative joint distribution over beliefs and actions (end-

effector velocities) which were recorded during the executions of the task. The

high dimensionality of the belief and its varying complexity during the searches

required that we compress the belief to its most likely state and entropy.

We evaluate this methodology of learning search strategies in a task con-

sisting of finding an object on a table. We demonstrate that multiple search

strategies are encoded in the joint belief-action distribution and we compare

this approach with greedy myopic and coastal navigation search algorithms.

The results show that the human learned search model is the fastest of all

methods.

We consider in a second setting a task in which human subjects have to

demonstrate how to search for and connect a plug to a power socket to a robot

apprentice deprived of visual information. We take the same approach but

incorporate the learning of the policy into a reinforcement learning framework

and demonstrate that by defining a simple cost function the quality of the final

learned policy can be significantly improved without the need of performing

exploratory rollouts which are costly and typically necessary in RL.

Both search tasks above can be considered as active localisation in the sense

that uncertainty originates from the position of the human or robot in the world.

We now consider search setting in which both the position of the robot and and

aspects of environment are uncertain. Given the unstructured nature of the be-

lief a histogram parametrisation of the joint distribution over the robot and the

environment is necessary. However, naively doing so becomes quickly intractable

as the computational cost is exponential in terms of the parametrisation. We

demonstrate that by only parametrising the marginals and by memorising the

parameters of the measurement likelihood functions we can recover the exact

same solution as the naive parametrisations at a cost which is linear in space

and time complexity as oppose to exponential.

Keywords: Programming by Demonstration, POMDP, Reinforcement Learn-

ii

ing, State Space Estimation (SSE)

iii

iv

Résumé

R
aisonner et prendre des décisions pour résoudre des problèmes avec une

information partielle est une difficulté à laquelle doit faire face tout être:

virtuels, synthétiques ou biologiques. Les tentatives de résolution de problèmes

dont l’information spatiale est partielle débouchent sur un nombre exorbitant

d’actions possibles ayant chacune une probabilité de réussite propre. Ceci rend

la résolution de tels problèmes difficile lors de l’emploi des méthodes de planning

traditionnelles.

Par l’éducation et de l’auto-apprentissage, l’être humain a su acquérir la

capacité d’agir dans les situations où l’incertitude est omniprésente. Les in-

telligences artificielles ou les robots auraient à bénéficier de cette capacité afin

de résoudre de manière optimale des tâches qui sont partiellement spécifiées et

donc où l’incertitude règne.

Un grand nombre de travaux scientifiques ont mis l’accent sur le transfert

du comportement humain aux robots via la programmation par apprentissage.

Cette méthode permet au robot d’apprendre à imiter les comportements hu-

mains. Des tâches contenants des éléments telles que la manipulation d’objets

ou la locomotion bipède ont été encodées par des fonctions symboliques, statis-

tiques ou dynamiques. Cependant, des exemples de transfert de comportement

cognitif de plus haut niveaux aux robots sont plus rares, ainsi que les compé-

tences en résolution de problèmes et les stratégies d’exploration.

L’objectif de ce mémoire est de créer des modèles mathématiques correspon-

dant au raisonnement humain à l’égard de l’incertitude présente durant des

tâches d’exploration dans le domaine de la navigation spatial à l’aide du touché,

c’est-à-dire sans information visuelle. Ces modèles de raisonnement sont trans-

férés à un robot apprenti. Cette méthode évite un long apprentissage de notre

savoir au robot.

Le choix de la navigation spatial au touché a été motivé par le fait qu’il

existe de nombreux domaines d’application robotique où l’incertitude résul-

tante d’une absence de perception visuelle est fréquente. L’entretien des fonds

marins, l’exploration planétaire et des tâches de manipulation avec des occlu-

sions fréquentes en sont quelques exemples.

Pour ce travail les scénarios suivants sont étudiés: la localisation d’un objet

dans une pièce et l’établissement d’une connexion avec une prise électrique.

v

Une difficulté présente dans l’apprentissage du raisonnement humain, dans

les scénarios de recherche que nous considérons, réside dans le fait que les pensées

et sensations (haptique et tactile) humaines sont inobservables et varient entre

les personnes. Lors d’expérimentations, les sensations perçues par les sujets

en fonction de la géométrique de leur environnement ont pu être déduites par

l’observation de leurs relation cinématiques. Pour d’autres prises de données les

sujets ont été équipés d’un capteur de force de façon à déduire leurs sensations.

Pour toutes les tâches considérées ces mesures sont transformées en un vecteur

binaire générique.

Les données ainsi obtenues sont utilisée pour modéliser les pensées humaines

via une fonction de densité de probabilité. Celle-ci est actualisée au travers

d’une estimation bayésienne récursive; qui est similaire au processus humain

d’intégration d’information en continu.

La modélisation des processus de raisonnement des sujets humains effectuant

les tâches exploratoires nous apprend une distribution conjointe des pensées et

actions (vitesses de l’effecteur). La dimensionnalité élevée de l’état de la pensé

et de sa complexité exige sa simplification aux états les plus probables tout en

conservant l’information de l’entropie. Une méthode réalisée à partir de ces

modèles et transmise à un robot lui a permis d’effectuer ces tâches de manière

plus efficace qu’avec une méthode traditionnelle.

Nous considérons une deuxième tâche qui consiste à connecter une fiche à

une prise électrique. Nous prenons la même approche, que nous perfectionnons

en intégrant un système de renforcement de l’apprentissage. Nous démontrons

qu’une simple fonction objective des coûts de la qualité améliore significative-

ment les capacités du robot.

Les deux tâches d’exploration mentionnées ci-dessus peuvent être consid-

érées comme des problèmes de localisation-actif où l’incertitude est uniquement

présente dans la relation entre la position de l’humain vis-à-vis du cadre de

référence, le monde. Nous considérons maintenant un problème d’exploration

où l’incertitude se trouve à la fois dans la position du robot (ou l’humain) et dans

des aspects de l’environnement comme la position d’objets. Étant donné la na-

ture non structurée de l’incertitude un histogramme est choisi pour paramétrer

la distribution conjointe des positions du robot et de l’environnement. Cepen-

dant, cette stratégie devient rapidement intenable; le coût de résolution devenant

exponentiel en fonction du grand nombre de paramètres.

Nous démontrons qu’en appliquant les probabilités marginales aux paramètres

des mesures, nous pouvons reproduire la solution identique de l’histogramme

avec une complexité linéaire au lieu d’exponentielle.

Mots-clés: Programmation par démonstration, POMDP, Reinforcement Learn-

ing, Modèle espace d’états

vi

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Contribution . 4

1.2.1 Learning to reason with uncertainty as humans 4

1.2.2 Reinforcement learning in belief space 5

1.2.3 Non-parametric Bayesian state space filter 6

1.3 Thesis outline . 6

2 Background . 11

2.1 Decisions under uncertainty . 12

2.1.1 Decision theory . 13

2.2 Sequential decision making . 15

2.2.1 POMDP . 19

2.3 Literature review . 25

2.3.1 Value Iteration . 25

2.3.2 Policy search . 31

2.3.3 Planning . 34

2.3.4 Heuristics . 36

2.3.5 Summary: literature . 39

2.4 Approach . 40

3 Learning to reason with uncertainty as humans 45

3.1 Outline . 47

3.2 Background . 47

3.2.1 Spatial navigation . 48

3.2.2 Human beliefs . 50

3.2.3 Programming by demonstration & uncertainty 51

3.3 Experiment: table search . 52

3.4 Formulation . 55

3.5 Policies . 59

3.5.1 Modelling human search strategies 59

3.5.2 Coastal Navigation . 61

3.5.3 Control . 61

3.6 Results and discussion . 63

3.6.1 Search & behaviour analysis 64

3.6.2 GMM & Coastal Navigation policy analysis 69

3.6.3 Distance efficiency & Uncertainty 72

3.7 Conclusions . 75

vii

4 Peg in hole . 77

4.1 Outline . 78

4.2 Background . 79

4.2.1 Peg-in-hole . 79

4.2.2 Actor-Critic & Fitted Reinforcement Learning 82

4.3 Experiment methods . 84

4.3.1 Participants and experiment protocol 87

4.4 Learning Actor and Critic . 88

4.4.1 Actor & Critic . 90

4.4.2 Fitted policy evaluation and improvement 91

4.5 Control architecture . 96

4.5.1 Robot Implementation . 97

4.6 Results . 101

4.6.1 Distance taken to reach the socket’s edge (Qualitative) . . 101

4.6.2 Distance taken to reach the socket’s edge (Quantitative) . 104

4.6.3 Importance of data . 106

4.6.4 Generalisation . 109

4.6.5 Distance taken to connect the plug to the socket 111

4.7 Discussion & Conclusion . 114

5 Non-parametric Bayesian State Space Estimator 117

5.1 Outline . 120

5.2 Background . 120

5.2.1 SLAM . 120

5.2.2 Active-SLAM & Exploration 121

5.3 Bayesian State Space Estimation 122

5.4 Measurement Likelihood Memory Filter 131

5.4.1 Evidence and marginals 135

5.4.2 MLMF-SLAM Algorithm 139

5.4.3 Space & time complexity 142

5.4.4 Scalable extension to multiple objects 144

5.5 Evaluation . 147

5.5.1 Evaluation of time complexity 148

5.5.2 Evaluation of the independence assumption 148

5.5.3 Evaluation of memory . 150

5.6 Conclusion . 154

6 Conclusion and summary . 157

6.1 Main Contributions . 157

6.2 Limitations and Future Work . 158

6.3 Final Words . 161

Appendices . 163

Appendix A Peg in hole . 165

A.1 Time to connect socket . 165

A.2 EM policy search . 168

A.3 Q-EM for GMM . 169

A.4 Unbiased estimator . 171

viii

Appendix B Non-parametric Bayesian State Space Estimator 173
B.1 Probabilities . 173
B.2 Bayesian filtering recursion . 173
B.3 Recursion example . 176
B.4 Derivation of the evidence . 177
B.5 Derivation of the marginal . 178

References . 181

ix

x

Chapter 1

Introduction

1.1 Motivation

Taking long term decisions or spontaneous reactive actions when presented

with incomplete information or partial knowledge is paramount to the survival

of any biological or synthetic entity. Reasoning given a state of uncertainty is

a continuously occurring event throughout our livelihood. When considering

long term decisions an abundance of examples come to mind. For instance,

in economic investments uncertainty is to the best of efforts quantified and

minimised in order to avoid unwarranted risks. Reactive actions are just as

common; when looking for the snooze button of an alarm clock, early in the

morning, our hand seems to autonomously search the surrounding space picking

up sensory cues gradually acquiring information guiding us towards the button.

All the above types of decision require the integration of evidence and an ability

to predict the outcomes of the taken decisions in order to insure a favourable

end state. In Artificial Intelligence (AI) & robotics, the ability to reason whilst

taking uncertainty into consideration has resulted in mixed levels of success.

There has been noticeable success in artificial agents beating humans at

board games such as backgammon (TD-Backgammon), chess (Deep blue) and

now recently go (AlphaGo). The gap between robotic autonomous systems and

humans starts to diverge however when the action space is continuous and un-

certainty is non-negligible. Although there are recent examples of robots coping

with such conditions such as opening doors (pose of the handle’s position and

shape uncertainty of the handle), walking downstairs (state transition uncer-

tainty)(Asimo), and turning valves (DARPA Robotic challenge, DAC Johnson

and et. al (2015)), repetition and reproducibility of such behaviour is hard.

This was highlighted in the results of the 2015 DAC in which issues (perception,

control, software engineering, etc...) resulted in many robots losing balance and

falling 1.

There is an increasing number of robotic application domains where per-

ception is limited, such as planetary2 and deep water exploration, and where

optimal decisions taking uncertainty into consideration play a critical role in

1http://www.cs.cmu.edu/~cga/drc/
2http://exploration.esa.int/mars/

1

http://www.cs.cmu.edu/~cga/drc/
http://exploration.esa.int/mars/

Figure 1.1: Examples of the decision making under uncertainty in both robotics and ev-
eryday life situations. (a) European Space Agency (ESA), remote orbital peg
in hole task. (b)-(c) ESA, simulated exploration of a cave on Mars in the dark.
(d)-(e) MIT DAC team, Atlas robot doing valve task, http://drc.mit.edu/.
Other pictures include underwater exploration and industrial peg-in-hole as-
sembly. Bottom-right, a robot equipped with allegro-hands carries out a peg-
in-hole assembly ask (Robot Cognition & Control Lab, KITECH)

the success of the tasks undertaken. It would be advantageous to leverage hu-

man decision and action abilities for tasks in which the effect of uncertainty is

problematic, such as exploration, search and manipulation.

It is not yet fully understood how decisions are taken, yet alone under uncer-

tainty. The difficulty is that two processes responsible for the synthesis of our

actions and decisions, that is our beliefs and desires, are not directly or easily

measurable. There is growing interest in Neuroscience to understand the mecha-

nisms underlying perception and decision making under uncertainty, Preuschoff

et al. (2013); there is not yet a consensus on the biological mechanisms involved

in decision making and efforts are ongoing3 to construct plausible models of our

decision processes. However, seemingly as a result of our prior knowledge and

experience, we are better than current robotic systems at handling and deal-

ing with uncertainty. Exploiting human abilities to accomplish tasks in which

uncertainty is problematic can help in improving AI algorithms.

AI & robotics considered early on uncertainty in decision making, where

the predominant domain of application was spatial navigation, Cassandra et al.

(1996). In these early applications, routes were planned from a start to a goal

state, through heuristic methods which chose paths that balanced the reduction

in uncertainty and distance taken to reach the goal. The above navigation prob-

lem has typically been treated in two parts: the construction and representation

3the human brain project: https://www.humanbrainproject.eu/

2

http://drc.mit.edu/

of a world model (the map) and a planner which can reason with respect to this

model in order to accomplish an objective. The world construction problem

attracted a large amount of interest and has resulted in many successfully ap-

plications in a wide spectrum of robotic domains (AUV, UAV, etc..). However,

the most successful mapping algorithms are well suited to situations in which a

direct observation exists between the robot and the features of the map which

is being built and the uncertainty originates from Gaussian noise corrupting the

measurement. This assumption breaks down in tasks in which mostly negative

information is present, that is the absence of sighting of a feature, such as when

exploring a dark cave (Figure 1.1 (b)-(c)) or in environments in which landmarks

are sparse or if insufficient sensory information is available such as in haptic and

tactile searches.

The integration of planning with mapping in a single framework is still dif-

ficult to achieve and is based on either representing the decision problem as a

Partially Observable Markov Decision Process (POMDP) which is notoriously

difficult to solve for large scale problems or by search heuristics.

The main difficulty faced by planners is that the dimensionality of the state

space and decision time horizon leads to an unmanageable space and time com-

plexity optimisation problem. Most data driven optimisation methods such

as Reinforcement Learning make the strong assumption that simple explorative

strategies (white noise) are sufficient to find optimal decision rules in a relatively

short time. This assumption is no longer valid in continuous POMDPs when

the number of parameters of the policy is quite large. We can take advantage of

expert knowledge from human teachers who can provide a set of explorative and

exploitative actions so that although the optimisation problem is large there is

no need to perform expensive and time consuming autonomous explorations to

find an optimal policy.

In summary there are still open problems in decision making when consid-

ering partial observability, which originate from both how decisions are planned

and how a map is constructed. As both humans and animals are far better

at navigation than robots, especially when uncertainty is present, Stankiewicz

et al. (2006), we decide to leverage human foresight and reasoning in a Program-

ming by Demonstration (PbD) framework (Billard et al. (2008)), which we coin

PbD-POMDP. PbD examples include the transfer of kinematic task constraints,

stiffness and impedance constraints and motion primitives, to name only a few.

As for the mapping problem, it has been studied and solved within a certain

set of constraining assumptions which do not hold when negative information

is present, in the case for haptic and tactile search tasks. For the mapping

problem we develop a Bayesian filter which is non-parametric and has no ex-

plicit representation of a joint distribution and is not restricted to non-negative

information.

In this thesis we address both mapping and planning problems under extreme

levels of uncertainty.

3

1.2 Contribution

In this thesis we bring to light three contributions:

1.2.1 Learning to reason with uncertainty as humans.

The first contribution is the transfer of human behaviour to robots, by

learning a policy extracted from from human demonstrations, in tasks

where there is much uncertainty, making them difficult to solve using

traditional techniques.

1.2.2 Reinforcement learning in belief space.

The second contribution is an extension of the first contribution, learning

to reason with uncertainty as humans. We added a cost function which

we demonstrate can be used to refine and improve an original policy solely

learned from human demonstrations without any additional simulation or

rollouts, in a Reinforcement Learning framework in belief space.

1.2.3 Non-parametric Bayesian state space filter.

The previous two contributions are part of a localisation problem where

the position of the human or robot is unknown. The third contribution ad-

dresses the problem when the map of the environment is also unknown and

only sparse sensory information is available making traditional mapping

and localisation methods inapplicable. We developed a non-parametric

Bayesian state space filter which can efficiently handle non-Gaussian joint

distributions.

Throughout this thesis we consider case studies in which vision is not avail-

able, leaving only tactile and haptic information. This choice effectively induces

a high level of uncertainty making it easier to study its effect on the decision

making process. As a consequence the tasks we consider are by nature, haptic

and tactile searches. The following three sections detail the contribution of this

thesis to research decision making under severe uncertainty constraints.

1.2.1 Learning to reason with uncertainty as humans

A Markov Decision Process (MDP) allows the formulation of a decision prob-

lem in terms of states, actions, a discount factor and a cost function. Given this

formulation and a suitable optimisation method (dynamic programming, tem-

poral difference, etc..) a set of optimal decision rules are returned, known as

a policy. The benefit of this approach is that the policy is non-myopic and

sequences of complicated actions can be synthesised to achieve a goal which an

opportunistic policy would fail to achieve. A Partially Observable Markov De-

cision Process (POMDP) is a generalisation of a MDP to a hidden state space

in which the state is only observable through measurements. Finding an exact

4

optimal solution to a POMDP problem is notoriously difficult due to the com-

putational complexities involved. Sample based approaches to solve a POMDP

rely heavily on a good trade-off between exploration and exploitation actions.

Good explorative actions increase the chance of discovering a set of optimal

decisions/actions.

In this thesis we propose a Programming from Demonstration approach to

solving POMDP problems, which we call PbD-POMDP, in haptic and tactile

search tasks. Our hypothesis is that if we know the cognitive map of the human

expert in terms of his believed location and observe his actions we can learn

a statistical policy which mimics his behaviour. Since the human’s beliefs are

not directly observable we infer them by assuming that the way we integrate

evidence is similar to a Bayesian filter. There is evidence both in cognitive and

neuroscience that this is the case (Bake et al. (2011)). From observing the expert

human performing a task we learn a cognitive model of the human’s decision

process by learning a generative joint distribution over his beliefs and actions.

The generative distribution is then used as a control policy. By this approach

we are able to have a policy which can handle uncertainty similarly to humans.

1.2.2 Reinforcement learning in belief space

Learning to search and act as humans and thus reproduce their exploratory

behaviour is beneficial in POMDP tasks, since traditional approaches are in-

feasible. The drawback of the PbD-POMDP approach is that the goal of the

task is implicitly encoded in the demonstrations performed by the teacher. To

be successfully, it is usually a requirement that the teacher is be an expert,

with a few notable exceptions, Rai et al. (2013). As a result the quality of

the learned behaviour depends on the skill and embodiment constraints of the

human. Since we are solely learning a PbD-POMDP statistical controller, both

good and bad demonstrations are mixed in together. By introducing a cost

function representing the task, we can explicitly obtain a quality metric of the

provided demonstrations. In this way we can optimise the parameters of our

generative model to maximise the cost function.

Reinforcement learning (RL) is a framework which allows, through repeated

interaction with the environment, to learn an optimal policy for a task. There

are many variants of RL, but all rely on simple exploration strategies to find

the optimal behaviour. These explorative strategies prohibit the application of

RL to large and continuous POMDP settings in which the policy is comprised

of many parameters. In our previous contribution we showed that it is feasible

to learn and extract multiple search strategies from human demonstrations and

in a sense we have already solved the exploration/exploitation dilemma which

plagues reinforcement learning applications.

We propose a Reinforcement Learning framework for the task of searching

5

and connecting a power plug to a socket, with only haptic information. A

set of human teachers demonstrate the task from which we record and build a

statistical controller. With the same data we learn a belief space value function

which we use to update the parameters of the original statistical controller. In

this RL-PbD-POMDP setup a very simple cost function provides a significant

policy improvement.

1.2.3 Non-parametric Bayesian state space filter

In both previous contributions we considered searches which can be cate-

gorised as localisation problems. In localisation problems the map of the envi-

ronment is considered to be known while the position of the agent is unknown.

There is a wide range of applications for localisation but there are also cases in

which both the map and the agent’s position is unknown. This kind of problem

is known as Simultaneous Localisation and Mapping (SLAM).

SLAM is concerned with the development of filters to accurately and effi-

ciently infer the state parameters of an agent (position, orientation) and aspects

of its environment, commonly referred to as the map. It is necessary for the

agent to achieve situatedness which is a precondition to planning and reason-

ing. The predominant assumption in most applications of SLAM algorithms

is that uncertainty is related to the noise in the sensor measurements. In our

haptic search tasks there is no visual information and a very large amount of

uncertainty. Most of the sensory feedback is negative information, a term used

to denote the non-event of a sensory response. In the absence of recurrent

sightings or direct measurements of objects there are no correlations from the

measurement errors which can be exploited.

In this thesis we propose a new SLAM filter, which we name Measurement

Likelihood Memory Filter (MLMF), in which no assumptions are made with

respect to the shape of the uncertainty (it can be Gaussian, multi-modal, uni-

form, etc..) and motion noise and we adopt a histogram parametrisation. The

conceptual difference between the MLMF and standard SLAM filters, such as

the Extended Kalman Filter (EKF), is that we avoid representing the joint dis-

tribution since it would entail a unfathomable space and time complexity. This

is achieved by keeping track of the history of measurement likelihood functions.

We demonstrate that our approach gives the same filtered marginals as a his-

togram filter. In such a way we achieve a Bayes filter which has both linear space

and time complexity. This filter is well suited to tasks in which the landmarks

are not directly observable.

1.3 Thesis outline

6

Conclusion

Motivation Goals

Chapter 1

Background

Chapter 2

Chapter 6

Human search ability

POMDP bottleneck

Non-Gauss uncertainty

Continuous POMDP

Non-Gauss state filter

Human decision making Decision theory

MDP & POMDP

Acting under uncertainty

Reached goal

Future work

Outlook

Non-parametric BSSE

Chapter 5

Negative information

Sparse likelihood

Peg in hole
Chapter 4

RL-PbD-POMDP

Human data

Scale & precision

Searching as humans
Chapter 3

Mixture of strategies

Risk prone & averse

PbD-POMDP

Figure 1.2: Roadmap of the Thesis with key points.

The thesis is structured according to three main contributions outlined in

the previous section, each comprising a chapter and the following paragraphs

give a detailed outline of the structure of this thesis, see Figure 1.2.

Chapter 2 - Background

In this chapter we introduce and mathematically formalise the sequential

decision making problem under uncertainty and we provide a detailed

literature review of the related work in this domain. We provide a brief

introduction to Decision Theory before focusing on the work in AI &

robotics relevant to POMDPs whilst highlighting their relevance and

contribution to our work.

7

Chapter 3 - Learning to reason with uncertainty as humans

In this chapter we present an approach for transferring human skills in a

blind haptic search task to a robot in our PbD-POMDP framework. The

belief of the human is represented by a particle filter and all subsequent

beliefs are inferred from the human’s motions acquired via a motion

tracking system. A generative model of the joint belief and actions dis-

tribution is learned and used to reproduce the behaviour on a WAM and

KUKA robot in two search tasks. Experimental evaluations showed the

approach to be superior to greedy opportunistic policies and traditional

path planning algorithms. We also provide a review of work related

to humans taking decisions under uncertainty in spatial navigation and

haptic tasks with an emphasis on works which consider diminished or

no visual information.

Chapter 4 - Reinforcement learning in belief space

In this chapter we present a similar approach to the one in chapter 3,

“Learning to reason with uncertainty as humans”, with the difference

that we explicitly encode the task through the introduction of a binary

objective function and we consider a peg-in-hole task under high levels

of uncertainty. The task requires both high and low levels of precision

from the agent to be able to accomplish it, which makes it particularly

interesting. We demonstrate the importance of initially provided hu-

man data as opposed to using data generated from a myopic policy.

We learn a value function approximation of the belief space through lo-

cally weighted regression and approximate dynamical programming. By

combining a PbD approach in this Actor-critic Reinforcement Learning

framework, we demonstrate an improvement upon a purely statistical

controller with nearly no additional cost. We refer to this approach as

RL-PbD-POMDP.

Chapter 5 - Non-parametric Bayesian state space filter

In this chapter we present an approach to perform a state space esti-

mation of a map and agent given that there is no direct observation

between the landmarks and the agent. We demonstrate that by keep-

ing track of the applied measurement functions rather than explicitly

parametrizing the full joint distribution of the landmarks and agent we

can fully reconstruct the optimal Bayesian state estimation. The advan-

tage of our approach is that the space complexity is linear as opposed to

exponential. We validate our approach in 2D search navigation tasks.

We also give an overview of the literature of SLAM and emphasis the

position of our filter within it.

8

Chapter 6 - Conclusion

We conclude by providing a holistic summary of our work and achieve-

ments. We draw attention to the current open problems and directions

for future work in the field of uncertainty and reasoning in Artificial

intelligence and robotics.

9

10

Chapter 2

Background

Acting under uncertainty is central to AI and robotics and has been an ac-

tive area of research for decades. It is an umbrella term which encompasses a

wide spectrum of fields: economics, psychology, cognitive science, neuroscience,

robotics and artificial intelligence. The work in this thesis relies on results from

all of the aforementioned fields with varying degree. Cognitive and neuroscience

bring justification and biological inspiration in the way we represent our beliefs

and how we act accordingly. AI and robotics provide computational models and

optimisation methods some of which are biologically inspired to be able to solve

decision problems given uncertainty. Because of the vast spectrum of topics we

cannot do justice to all them and we will focus on works which are directly

relevant to the problems we are addressing in this thesis, which is how to teach

a robotic apprentice to act under uncertainty. In this chapter we cover the fol-

lowing topics in the presented order: Decision Theory (DT), Markov Decision

Process (MDP), Partially Observable Markov Decision Process (POMDP), a

literature review and the approach taken in this thesis.

Figure 2.1: Chapter outline.

• Section 2.1, introduces what is meant by taking decisions under uncer-

tainty and what are the different sources of uncertainty. We take a his-

torical look at Decision Theory since it is the root node of all subsequent

research in reasoning and acting under uncertainty and provides for a good

introduction to the topics which will follow.

• Section 2.2, mathematically formalises the sequential decision problem

under uncertainty and is linked with Decision Theory. We derive from

first principal the Bellman optimal equation which is one of the most

important result to date in sequential decision processes.

• Section 2.3, provides an in depth literature review with the latest results

in AI & robotics in the subject of planning and acting under uncertainty.

11

We draw attention to the different approaches to solving this problem

whilst pointing out their advantages and weaknesses. We summaries what

has been achieved so fare and what are the open problems.

• Section 2.4, the core approach taken by this thesis is detailed. We outline

how we teach a robotic apprentice to act under uncertainty.

2.1 Decisions under uncertainty

The main objective of reasoning under uncertainty is to find an action or

sequence of actions which will result in the most preferable outcome. There are

two key attributes which can render this problem difficult: stochastic actions

and latent states.

Stochastic actions when applied in the same state will not always result in

the same outcome. This type of uncertainty can arise from many sources. For in-

stance, the outcome of chaotic systems will always lead to different results when

the same action is applied to the same initial conditions, such as the throwing

of a dice or the flipping of a coin. In outdoor robotics the terrain might lead to

slippage, causing the robot to skid, or in an underwater environment currents

might drastically offset the position of an UAV. In articulated robots, the fric-

tion in the joints can result in an error in the end-effector position (especially

true for cable driven robots).

The second source of uncertainty is when the state space cannot be deter-

mined. This arises when the sensors are not able to provide sufficient information

to reliably estimate the state. In robotics this uncertainty can arise from inade-

quate or noisy sensors. In poor environmental conditions such as humidity, lack

of light or smoke the robot can experience difficulties in ascertaining its position

and thus in planning how to achieve a given objective.

Given these two types of uncertainty, the question is how to represent these

uncertainties. The predominant approach is to quantify the uncertainty in terms

of probabilities. For instance the application of a forward action to a wheeled

robot will result in some probability in a new position further ahead and with a

remaining probability distributed to adjacent regions which might have occurred

due to slippage.

An observation made through the robot’s sensors will result in a probability

distribution over the robot’s probable location. This quantification of the action

and observation uncertainty, in terms of a probability distribution over the state,

must be utilised by the agent to plan actions towards accomplishing its goal. In

order to take a decision, the agent must assign a utility to each state weighted by

the probability of its outcome and act so as to get the highest utility. The utility

indicates a preference over the outcomes and when combined with probabilities

leads to Decision Theory, which is the topic of the next section.

12

desires

Environment
state

Agent
state

World

beliefs

principale of
rational belief

principale of
rational action

principale of
rational desires

actions

Figure 2.2: Relation between beliefs, desires and actions and are all considered to be ratio-
nal.

2.1.1 Decision theory

The central question that Decision Theory asks is: how do we take decisions

when faced with uncertain outcomes ? To answer such a question we need to

identify the attributes which are involved when we take a decision, namely our

beliefs and desires. Beliefs reflect a degree of knowledge we have about the

world. This degree is ascertained by the amount of evidence we have in support

of our beliefs. Epistemology studies in great detail the relationship between

truth, beliefs and knowledge. We will not go into a philosophical discussion of

their interplay, but make use of the following: if we have sufficient evidence in

support of our beliefs and they represent the truth then we consider them to be

rational beliefs. As for desires, they are linked to our disposition to take upon

them. For example if I want to switch off my alarm clock I have to look for it in

the last area I believed it to be in. These two attributes, beliefs and desires, are

used to frame a decision problem. Early work in decision theory assumed that

the problem was well grounded and focused on finding what rational actions

need to be taken given our beliefs in order to achieve our desires.

Early interest in such questions were typically centred around economics

which included deciding an appropriate investment or wager for a particular

gamble. It was noted that the expected monetary outcome of a gamble as a

means of basing a decision, would often lead to a course of action which contra-

dicts common sense. A famous example of this contradiction is demonstrated in

the St. Petersburg paradox. In this paradox a bookmaker proposes the follow-

ing gamble. An initial pot starts with a content of £2. The bookmaker proceeds

to flip a fair coin until the first appearance of a tails which ends the game. Until

13

the occurrence of the first tails the money in the pot doubles after every toss.

Once the game ends the player leaves with the contents of the pot. As an avid

gambler and expected value maximiser how much would one be willing to pay

to enter this game ? To access, one would need to know the average payout. The

amount of money increases by £2n, where n is the number of non-final tosses

and the probability of reaching n is 1/2n. In this case the expected monetary

outcome is infinite:

E
p(£)
{£} =

1

2
£2︸︷︷︸

first toss

+
1

4
£4 + · · · =

∞∑
n=1

£
2n

2n
= £∞

So the expected gain or return for paying to enter such game is an infinite

amount of money. Thus in principal if a player was seeking to maximise his

expected return value he would be willing to pay an amount close to infinity to

enter the game. This does not seem a good decision rule; no person in the world

would be willing to pay such high amounts to enter this game.

Nicolas Bernoulli proposed a solution to the problem which was later pub-

lished by his brother Daniel (republished Bernoulli (1954)). He introduced the

notion of a utility function, and he claimed that people should base their

decision on the expected utility instead of solely on the monetary outcome.

“...the value of an item must not be based on its price, but rather

on the utility it yields.”

— Daniel Bernoulli

The introduction of a utility function takes into account that the net worth

of a person will influence their decision since different people (in terms of their

monetary worth) will weigh the gain differently. The utility function introduced

by Bernoulli was the logarithm of the monetary outcome x ∈ X weighted by its

probability p(x) which results in an expected utility:

U(x) = E{u(x)} =
∑
x∈X

p(x) log(x)︸ ︷︷ ︸
u(x)

It is later in 1944 that von Neumann and Morgenstern (Von Neumann and

Morgenstern (1990)) axiomised Bernoulli’s utility function and proved that if a

decision maker has a preference over a set of lotteries1 which satisfy four axioms

(completeness, transitivity, continuity, independence) then there exists a utility

function whose expectation preserves this preference. An agent whose decisions

can be shown to maximise the vNM expected utility are said to be rational

otherwise they are irrational.

This is the theoretical basis of most economic theory. It is a normative

model of how people should behave given uncertainty. It is also the basis of

1the term lottery refers to a probability distribution in the original text.

14

most if not all decision making, cogitative architectures and control policies in

AI and robotics (to the best of the author’s knowledge).

An aspect to keep in mind regarding the vNM model is that it is norma-

tive; it states what should be a rational decision. As a result it is not always

consistent with human behaviour. There is great debate regarding the predic-

tions made by vNM models with respect to our behaviour. There have been

many studies both demonstrating divergence between the model’s predictions

and our observed behaviour but also supporting evidence that it does reflect

the output of our decision making process. Reasons for divergence have been

attributed to how people weigh probabilities and how the decision problem is

framed. But probably the most important aspect is that in most decisions we

are faced with, the quantification and rationality of our beliefs might not be

adequate and limitations of our working memory will come into play in the final

decision.

Nevertheless vNM agents are predominantly used in AI and robotics as a

means of implementing decision making processes or in control policies. In

psychology and cogitative science vNM agents are a used for comparing human

behaviour against an optimal strategy (by optimal we mean it is rational in

the vNM sense). It is important to remember the origins and assumptions

underlying the models that are used to represent control policies or cognitive

architectures implemented into robotic systems or software agents.

2.2 Sequential decision making

When Decision Theory is brought up, we are usually referring to a one shot

non-temporal decision. However many interesting decision problems are sequen-

tial. In such situations, we must consider the effect current decisions will have on

future decisions. Expected utility theory (part of Decision Theory) is extendable

to a temporal decision problem. There are however two subtle but important

differences between the temporal and non-temporal decision problems. The first

difference is the utility. In the one time step problem an outcome has one utility

assigned to it, u(x). In the temporal decision problem a utility has to be as-

signed to a sequence of outcomes, u(x0:T), where T is the number of sequential

decisions taken. The utility of a sequence is the sum of the individual utilities.

However if the decision problem is non terminating this will lead to an un-

bounded utility. To bound the utility a discount factor γ ∈ [0, 1) is introduced

and the new temporal utility function becomes:

u(x0:T) :=

T∑
t=0

γtu(xt) (2.2.1)

The discount factor controls the importance that later utilities have on the

final utility. If the discount factor is set to zero we obtain the original one shot

15

Notation Definitions

xt ∈ R3 Cartesian state space position of the agent end-effector.

yt ∈ RM Observation/measurement from the agents sensors.

at ∈ R3 Action, Cartesian velocity of the end-effector of the agent.

X,Y,A State, observation and action random variables where x, y
and a are realisation.

p(xt) Short hand notation for a probability density function,
pX(xt).

x0:t {x0, x1, · · · , xt−1, xt}, history up to time t.

p(xt|y0:t, a1:t) Filtered probability distribution over the state space given
the action and observation history.

bt Belief state is the filtered state space distribution bt =
p(xt|y0:t, a1:t) which will be written as bt for simplicity.

πθ(at|·) Parametric probabilistic policy, at ∼ πθ(at|·), where θ is
the parameters.

u(x) ∈ R Utility function, returns the utility of being in state x. It
can also be dependent on the action, u(x, a).

γ ∈ [0, 1) Discount factor, the closer to one the more the later utilities
are considered. When set to zero, only immediate utilities
are considered which would result in a myopic greedy agent.

p(xt+1|xt, at) State transition model, returns the likelihood/probability
of reaching state xt+1 given that action at is applied in
state xt.

p(yt|xt) Observation/measurement model, returns the likeli-
hood/probability of observing yt given that the agent is
in state xt.

τ(bt, ut, yt) Updates a belief given a motion and observation. It makes
use of both the motion and observation functions. The
state space estimation function, τ , can be any kind of state
space filter such as an Extended Kalman Filter (EKF) or a
Particle Filter (PF).

Table 2.1: Definition of common variables used.

16

utility function and if we were to take actions which maximised the expected

utility we would not be considering at all the effect current decisions have at

future decision points. An agent reasoning in such a way is called myopic. The

second difference between the temporal and non-temporal decision problem is

the way in which probabilities are assigned to outcomes. This was p(x) in the

Decision Theory utility function formulation. Now because of the sequential

nature of the problem we consider a conditional state transfer probability dis-

tribution p(xt+1|xt, at) which models the probability of going from state xt to

xt+1 given that action at is taken. This particular representation of a sequential

decision problem is called a Markov Decision Process (MDP) and to be

more exact a first order MDP. The necessary models are the state transition

and utility functions. The assumption of such a model is that all necessary

information to take a decision is encoded in the current state and there is no

need to consider the history of state transitions when taking a current deci-

sion. In Figure 2.3 we illustrate two graphical representations of a MDP, which

are known as Dynamic Bayesian Networks (DBN). A DBN represents the

temporal relationship and conditional dependence between random variables,

decisions and utilities, which are represented by circles, squares and diamonds.

For the MDP to the left the actions are not stochastic, whilst for the MDP on

the right the actions taken are governed by a stochastic policy, πθ(at|xt). A

policy represents the plan of an agent for each state, given a state it will output

an action. A policy is considered optimal when it maximises the expected utility

function, it is optimal in the vNM sense.

(a) off-policy (b) on-policy

Figure 2.3: Dynamical Bayesian Network of a Markov Decision Process; it encodes the
temporal relation between the random variables (circles), utilities (diamond)
and decisions (squares). The arrows specify conditional distributions. In (a)
the decision nodes are not considered random variables whilst in (b) they are.
From these two DBN we can read off two conditional distributions, the state
transition distribution (in red) and the action distribution (in purple).

Solving a MDP means finding a policy whose actions in any given state

will always maximise the expected utility. Such a policy is usually denoted

as π∗, the optimal policy. As in decision theory, the expected utility is the

17

utility of a sequence of states u(x0:T) weighted by its probability. The graphical

representation (Figure 2.3 (a)) allows the probability of a sequence of states and

actions, to be read off directly:

p(x0:T , a0:T−1) = p(x0)

T−1∏
t=0

p(xt+1|xt, at) (2.2.2)

u(x0:T) = u(x0) + γu(x1) + · · ·+ γT−1u(xT−1) + γTu(xT) (2.2.3)

We are interested in finding the sequence of actions, a0:T , which will maximise

the expected utility function:

argmax
a0:T−1

U(x0:T , a0:T−1) = max
a0

∑
x1

· · ·max
aT−1

∑
xT

(
p(x0:T , a0:T−1)u(x0:T)

)
(2.2.4)

Solving the above directly in its current form would to lead to an exponential

complexity. Making use of the first order Markov assumption and that current

utilities do not depend on future utilities, the summations can be re-arranged

and a recursive pattern emerges which can be exploited:

argmax
a0:T−1

U(x0:T , a0:T−1) = max
a0

∑
x1

· · ·max
aT−2

∑
xT−1

p(x0:T−1, a0:T−2)

(
u(x0:T−2) + γT−1

(
u(xT−1) + γmax

aT−1

∑
xT

p(xT |xT−1, aT−1)u(xT)

))
(2.2.5)

From the rearrangement we notice that Equation 2.2.5 has the same functional

form as Equation 2.2.4, except that the recursive component can be summarised

by Equation 2.2.6, which is known as the Bellman optimal equation (the as-

terisk indicating that it is optimal),

V ∗(xt) := u(xt) + γmax
at

∑
xt+1

p(xt+1|xt, at)V (xt+1) (2.2.6)

where for the terminal state VT (xT) = u(xT). The Bellman equation is a means

of solving a sequential decision problem through use of dynamic programming.

It shows that the utility of the current state is based on the immediate utility

and the discounted maximum utility of the next state. Making use of this

recursion reduces the computation complexity which is now quadratic in the

number of states, O(T |A| |X|2). To find the optimal value and subsequent

policy an approach would be to repeatedly apply the Bellman equation to each

state until the value function converges. What makes the problem difficult to

solve is maximisation over the actions. This induces two problems, the first is

that the optimisation is nonlinear and the second is that if the action space is

continuous the maximisation will be expensive to compute. This brings into

play the two main approaches to solving a MDP: off-policy and on-policy.

18

Off-policy methods solve directly for the optimal value function, V ∗(x), and

perform the maximisation over the actions. Value-Iteration (VI) is such

a method. On-policy approaches, V π(x), find the optimal value and policy

through repeating policy evaluation and improvement steps. In the policy

evaluation the value or utility of a policy is found through solving the on-policy

version of the Bellman equation:

V π(xt) := u(xt) + γ
∑
at

πθ(at|xt)
∑
xt+1

p(xt+1|xt, at)V (xt+1) (2.2.7)

In the policy improvement step, the policy is made more greedy by maximising

the value function. Through the repetition of these two steps both the value

function and policy converge to the optimal. On-policy methods are preferred

in settings where the action space is highly continuous, such as in robotics. Us-

ing dynamic programming is however not the method of choice since it requires

multiple passes through the entire state space and for this reason it is necessary

to have the model of the state transition a priori. Instead Reinforcement

Learning (RL) methods are used to find an optimal value and policy. RL is a

sample based approach in which an agent interacts with the environment gath-

ering examples of state transitions and the utility and uses them to gradually

solve the Bellman equation.

We introduced the formulation of a sequential decision process for the MDP

model and showed how an optimal policy and value function are obtained

through maximising the expected utility. The re-arrangement of the summa-

tions, known as variable elimination, allows to exploits a recursive structure

present in the Markov chain. The recursive component turns out to be the

Bellman optimal equation, which when solved (via dynamic programming or re-

inforcement learning) results in an optimal value and policy function. A MDP

models the uncertainty inherent in the state transition but not the uncertainty

of the state. The MDP assumes that the state space is always fully observ-

able, which is a strong assumption. In robotics, the on board sensors return

an estimate of the state with a certain amount of uncertainty associated with

it. To take this additional uncertainty into consideration the MDP has to ac-

commodate it. This leads to a Partially Observable Markov Decision Process

(POMDP).

2.2.1 POMDP

A POMDP is a popular approach for formulating a sequential decision pro-

cess in which both motion and observation uncertainty are considered. In this

partially observable setting the agent does not know with exactitude the state

of the environment, but is able to observe it through his sensors. We define a

sensor mathematically as being a function of the state space, xt, relating to an

19

observation, yt, corrupted by some noise, εt,

yt = h(xt) + εt (2.2.8)

The sensor function h(xt) can be linear or non-linear and the additive noise

term εt can be Gaussian (usually the case), non-Gaussian, state dependent or

not. The uncertainty of the latent state, xt, is quantified by a probability

distribution, p(x). This probability distribution represents all the hypothetical

positions in the world in which the agent can be found. In Figure 2.4 (a) an agent

is located in a square yard containing a wall. Initially the agent is confident of his

position; his state uncertainty p(x0) is low, represented by the blue probability

density. However during a circular displacement the agent skids and the state

uncertainty is increased by the state transition function, p(xt+1|xt, at); this step

is referred to as motion update. To reduce the uncertainty, the agent takes

a measurement, yt, with his sensors which provide range, r, and bearing, φ,

information with respect to the wall, see Figure 2.4 (b). The agent uses the

model of his sensor, known a priori, to deduce all possible locations in the

world from where the current measurement could have originated. This model

is known as the measurement likelihood function:

p(yt|xt) = N (yt − h(xt); 0,Σ) (2.2.9)

The measurement likelihood function makes use of the measurement function

h(x) and it models the noise in the sensor. In this case the noise model, εt,

is Gaussian, paramaterized with mean zero and covariance Σ. Typically the

parameters of the measurement likelihood function are learned a priori.

In Figure 2.4 (c) the likelihood is illustrated. The dark regions indicate

areas of high likelihood, which are possible locations from which the sensor

measurement could have originated. The value of the measurement likelihood

function is then integrated into the state space probability density function; this

step is referred to as measurement update.

The two update steps, motion and measurement, are part of a recursive state

estimation process called a Bayesian state space filter, which we formalise

below in Equation 2.2.10-2.2.11.

The motion model, Equation 2.2.10, updates the position of the probability

distribution according to the applied action, at, and adds uncertainty by in-

creasing the spread of the distribution. The measurement information is then

incorporated by Equation 2.2.11. The measurement likelihood always reduces

the uncertainty or leaves it constant. The Bayesian state space filter is such

an important component to belief space decision making that we define it by

the filter function, τ(bt, at, yt), which takes as input the current belief, applied

action and sensed measurement and returns the resulting belief bt+1. The state

space filter is an essential component to a POMDP which will become apparent

later.

20

-15 0 15
-15

0

15

-15 0 15
-15

0

15

(a)

-15 0 15
-15

0

15

-15 0 15
-15

0

15

(b)

-15 0 15
-15

0

15

(c)

-15 0 15
-15

0

15

(d)

Figure 2.4: (a) An agent is located to the south west of a brick wall. It is equipped with
a range sensor. The agent takes a forward action but skids, which results in
a high increase of the uncertainty.(b) The agent takes a measurement, y0, of
this distance to the wall; because his sensor is noisy his estimate is inaccurate.
(c) The agent uses his measurement model to evaluate the plausibility of all
locations in the world which would result in a similar measurement; illustrated
by the likelihood function p(y0|x0). (d) The likelihood is integrated into the
probability density function; p(x0|y0) ∝ p(y0|x)p(x0).

21

The Bayesian filter turns a prior probability distribution over the
state space, p(xt−1|y0:t−1, a1:t−1), to a posterior p(xt|y0:t, a1:t) by
incorporating both motion and measurement. Applied recursively it
keep a probability distribution over the state space which considers all
the past history of actions and observations. We define the application
of these two steps by the filter function τ , which takes the current
belief, the applied action and measurement, and outputs the next
belief, bt+1.

Motion update

p(xt|y0:t−1, a1:t) =

∫
p(xt|xt−1, at) p(xt−1|y0:t−1, a1:t−1) dxt−1

(2.2.10)
Measurement update

p(xt|y0:t, a1:t) =
1

p(yt|y0:t−1, a1:t)
p(yt|xt) p(xt|y0:t−1, a1:t) (2.2.11)

p(yt|y0:t−1, a1:t) =

∫
p(yt|xt) p(xt|y0:t−1, a1:t)dxt (2.2.12)

Filter function

bt+1 := τ(bt, at, yt) (2.2.13)

Bayesian filter

Figure 2.5: Bayesian state space filter.

22

(a) (b)

Figure 2.6: (a) POMDP graphical model. The state space, X, is hidden, but is still par-
tially observable through a measurement, Y . (b) The POMDP is cast into a
belief Markov Decision Process, belief-MDP. The state space is a probability
distribution, b(xt) = p(xt), (known as a belief state) and is no longer considered
a latent state. The original state transition function p(xt+1|xt, at) is replaced
by a belief state transition, p(bt+1|bt, at). The reward is now a function of the
belief.

With the latent state, its relation to the observation variable and the Bayesian

filter defined, we can introduce the POMDP model in Figure 2.6 (left). It has

the same Markov chain structure as the MDP, introduced in the previous sec-

tion, but the state space X is latent and a new layer of observation variables Y

is added.

As the state space is only partially observable the expected utility has to

be computed for each possible history of states, actions and observations. All

approaches in the literature instead encapsulate all these possible histories into

a belief state b(xt) (for short notation bt) which is a probability distribution

(also referred to as an information state, I -state) over the state space xt and

use this new state description to cast the POMDP into a belief-MDP (states

are probability distributions, beliefs). By casting a POMDP into a belief -MDP

the state space is considered observable and we recover the same structure as in

the standard MDP problem.

As we are working within a belief space the reward function has to be adapted

to:

u(bt) =
∑
xt

u(xt) b(xt) = Ebt{u(xt)} (2.2.14)

which is an expectation. The goal as before is to find a sequence of actions which

will maximise the expected utility. Since our belief -MDP has the same structural

form as the MDP, the solution to the problem is the same Bellman equation

derived previously. We just substitute the new belief transition function and we

get the corresponding belief Bellman Equation, 2.2.15.

V ∗(bt) = u(bt) + γmax
at

∑
bt+1

p(bt+1|bt, at)V ∗(bt+1) (2.2.15)

23

However, using this equation in this form is problematic, as we are summing over

the space of beliefs (which is high dimensional and infinite for the continuous

case) and the transition function is a probability distribution over beliefs. The

key to overcome this problem is to realise that if we know what the current

measurement and applied action are, there is only one valid possible belief, bt+1,

and the summation over beliefs vanishes. This can be seen by substituting the

belief transition function, Equation 2.2.16, into the Bellman equation Equation

2.2.15.

p(bt+1|bt, at) =
∑
yt

p(bt+1|bt, at, yt) p(yt|y0:t−1, a0:t) (2.2.16)

After the substitution and re-arrangement of the summation we get Equation

2.2.17. Since the observation is known (because the outer summation is over yt),

the summation over the beliefs vanishes since there is only one possible future

belief which is given by the Bayesian filter function bt+1 = τ(bt, at, yt),

u(bt) + γmax
at

∑
yt

∑
bt+1

p(bt+1|bt, at, yt)V ∗(bt+1)


︸ ︷︷ ︸

1·V ∗(τ(bt,at,yt))

p(yt|y0:t−1, a0:t) (2.2.17)

which simplifies to:

V ∗(bt) = u(bt) + γmax
at

∑
yt

p(yt|y0:t−1, a0:t)V
∗(τ(bt, at, yt))

= u(bt) + γmax
at

E
yt
{V ∗(bt+1)} (2.2.18)

The belief Bellman equation is intuitive. The value of the current belief is

the immediate utility plus the value of the future belief states weighted by the

probability of a measurement which would result in these future belief states. An

exact solution exists only when considering a finite state, action and observation

space and a finite planning horizon T , Richard D. Smallwood (1973). The belief-

MDP can be solved with value iteration but each backup operation (application

of the bellman equation) results in an exponential growth in the number of

parameters needed to represent the value function, which is computationally

intractable.

Most early techniques for solving POMDPs used value iteration. The pref-

erence for persisting in doing this, given the computational burden, is that

since the utility function uses a linear operator (the expectation) and that the

Bellman backup operation (applying the Bellman equation to the current value

function) preservers the linearity, the value function after each updates is Piece

Wise Linear and Convex (PWLC). A good text on the implementation of exact

value iteration for POMDPs can be found in (Thrun et al., 2005a, Chap. 15)

and Kaelbling et al. (1998).

24

In summary there are two problems in solving a POMDP:

• curse of dimensionality: A discrete state space of size N will result in

a belief space of dimension N − 1. The discretization choice will greatly

impact the computational cost of Value Iteration.

• curse of history: The space and computational complexity in the worst

case is exponential with respect to the planning horizon, T , Du et al.

(2010).

Given such complexity it is hard to see POMDPs being actually usable for

real world scenarios. As a result many approximate techniques have emerged

with some being very successful. In the next section, we survey the literature and

the developments of approximate POMDP algorithms and their applications.

2.3 Literature review

We review the latest methods on Acting under uncertainty. This is an ex-

tremely dense and spread out area of research, no doubt because of its impor-

tance. If uncertainty is not considered adequately, the control policy risks being

suboptimal or lead to drastic failure. We will focus the review four subsections

in the following order:

• 2.3.1 Value Iteration (VI)

• 2.3.2 Policy Search

• 2.3.3 Planning

• 2.3.4 Heuristics

with an emphasis on robotic applications. In Figure 2.7 we illustrate graph-

ically these four topics which their associated sub-fields.

2.3.1 Value Iteration

The POMDP formulation introduced previously is the main theoretical start-

ing point of policies which consider uncertainty optimally. However solving an

exact POMDP through dynamic programming (value iteration) is computation-

ally intractable and an exact solution only exists for discrete state, action and

observation space (Thrun et al., 2005a, Chap. 15). This intractability, in which

only problems with a few states could be solved has inhibited the application of

the POMDP framework to robotics.

25

Acting under
uncertainty

Policy
search

EM

Gradient
Gradient

free

Planning

Belief
road
maps

Optimal
control

Heuristics
Info.
Gain

QMDP

Myopic

Value
Iteration

Latent
VIApprox.

VI

Point-
base
VI

Actor-
critic

•E-PCA
•MC-POMDP

•SARSOP
•HSVI2

•PoWER

•REINFORCE

• eNAC

•B-LQR
•LQG-MP

•BRM
•FIRM

Figure 2.7: Mind-map of AI and robotic methods for acting under uncertainty.

26

Point-base Value Iteration

The first breakthrough of the application of VI in belief space to a robotic

application was Point-Base Value Iteration (PBVI) Pineau et al. (2003). It al-

lowed VI to be applied to a robotic navigation problem consisting of 626 states

in a hospital patient search task. The key insight to scale VI was to only con-

sider a subset of belief states which were reachable and relevant to the problem.

This is achieved by smart sampling techniques and only performing VI backups

on beliefs states which are relevant. From this point most research has focused

on determining efficient strategies to sample belief points and on which to ap-

ply VI. Heuristic Search Value Iteration (HSVI1) (Smith and Simmons (2004))

and HSVI2 (Smith and Simmons (2012)) use forward search heuristics to find

relevant beliefs by keeping a lower and upper bound on the current estimated

value function. The belief tree is expanded by choosing an action and obser-

vation with relation to the potential future effect on the value of the bounds,

which are being minimised. HSVI has a comparable performance with respect

to classical PBVI except in the game of tag (a benchmark problem), in which

it fairs significantly better. A method developed after HSVI, named Forward

Search Value Iteration (FSVI) (Veloso (2007)) takes an alternative approach

to keeping an upper and lower bound on the value function, as in HSVI, since

doing so results in a drastic increase in the computation time necessary to find a

solution. Instead FSVI assumes that the state space is fully observable and first

solves the MDP for this case. The MDP is then used to generate a set of belief

points for the PBVI solver. This is achieved by taking the Most Likely State

(MLS) and to follow the MDP policy accordingly. It is orders of magnitude

faster than HSVI and results in comparable polices. FSVI fairs badly however

when information gathering actions are necessary. Since it is essentially using

a myopic policy to generate its samples, these will be insufficient to find the

global optimal policy when the solution requires information gathering actions.

The very last sampling generation technique to date, which is considered to be

the most efficient, is SARSOP (Kurniawati et al. (2008)). It uses aspects from

both HSVI and FSVI. It keeps upper and lower bounds on the value function

and also uses the MDP solution to generate samples. The key idea of SARSOP

is to sample belief points which will contain the optimal set of samples neces-

sary to achieve an optimal policy. Both SARSOP and HSVI2 are considered

state of the art in PBVI value approximation techniques. See Du et al. (2010)

for a review and comparison of both techniques on problems with thousands

of states including simulation examples in grasping, tracking and UAV naviga-

tion. Other more recent approaches, Veiga et al. (2014), consider factorising

the POMDP according to the different observations (independence assumption)

and making use of linear function approximation methods to address the curse

of dimensionality effecting the parameters of the POMDP (α-vectors).

27

These methods are well suited to addressing problems which are easily ex-

pressed in a discrete state space. All considered problems are simulation based

and no physical interaction problems are considered. Besides the belief set

generation problem, interest has also been poised on porting the PBVI to a

continuous state space. An example of a continuous action space PBVI method

is Perseus Spaan and Vlassis (2005), in which the authors replace the maximi-

sation over the action by sampling the actions from a parametric continuous

representation. In Porta et al. (2006) the state space, transition and obser-

vation model are represented by Gaussian Mixtures and the authors consider

a particle set or Gaussian mixture representation of the belief. The authors

show that a continuous representation of the state space preserves the PWLC

property of the value function. They extend their method to continuous action

and observations through sampling instead of discretising. Results are shown

in a 1D continuous corridor setting. In a more recent approach Brechtel et al.

(2013) a discrete state presentation of a continuous state space is learned and is

combined with sampling techniques to solve the continuous integrals present in

the Bellman equation. The explicit learning of the state representation leads to

an increased performance when compared to the other continuous state PBVI

methods.

PBVI techniques have come fare since their first application to robotic nav-

igation back in 2003 and have lead to a rapid increase of interest. Initially

only a few hundred states could be considered and now problems with over

tens of thousand of states are being solved in seconds (very problem specific of

course). Most of the research has focused on how to gather a good set of sample

beliefs efficiently. Later efforts focused on adapting PBVI to continuous state

spaces more suited to robotic applications. The main approach consists of using

sampling techniques to overcome the maximisation over the actions (when con-

sidering continuous actions) or to choose a suitable parametric representation of

the transition, observation and utility model so that the Bellman equation can

be solved in closed form. Most evaluations of have focused on simulated and

simplified robotic navigation problems in 1D and 2D. We have not discussed

online POMDP-solvers since they are also based on VI and sampling techniques

and thus share a lot of similarities with PBVI. We refer the reader to Ross et al.

(2008) for a detailed review. In summary, trying to preserver the PWLC prop-

erty of the value functions leads to complicated VI methods which are difficult

to port to fully continuous state, action and observation space. Efforts which

have attempted to do this have not yet be shown to scale. As a result of this dif-

ficulty, of making this transition to a fully continuous space, approximate value

iteration methods have been explored as an alternative. In approximate value

iteration the PWLC property of the value function is dropped and is represented

by a regression function.

Approximate Value Iteration

28

Point-based Value Iteration techniques try to preserve the PWLC property

of the value function. This directly leads to a discretization of the state space

which if continuous by nature, is prone to the curse of dimensionality. An alter-

native approach is to represent the value function by a non-parametric function,

parameterize the belief space and perform approximate dynamic programming.

A very first successful example of this approach is Monte Carlo POMDP

(MC-POMDP) Thrun (2000) in which a continuous state, action and observa-

tion version of the Heaven & Hell benchmark problem was solved successfully

with a working implementation on a non-simulated mobile base. The belief was

represented by a particle filter and the policy by a Q-value function, whose func-

tional form was a non-parametric regressor (k-nearest neighbour) of the particle

filter. The distance metric was the sample KL divergence between two parti-

cle sets. The POMDP was solved through Reinforcement Learning (interaction

with the environment) and approximated dynamic programming also known as

experience replay, batch RL or Fitted Q-Iteration (FQI) Ernst et al. (2005b).

Although highly computationally demanding the method was successful.

This inspired many similar approaches such as Brooks and Williams (2011)

where the belief state filter was an Extended Kalman Filter (EKF), the value

function was also non-parametric and the POMDP was solved via FQI. When

compared with Perseus in a discretized 2D localisation task both approaches

reached equivalent policies but the authors method achieved it far faster than

Perseus, a PBVI method.

An alternative approach is to represented the history of the previous states

or observations in an augmented state space and the treat the problem as a

standard MDP. In this way the partial observability is directly encoded in the

state representation. The motivation is that in contrast to POMDPs there has

been fare more research focused on MDPs and much work has been done on

the application of non-linear function approximators for representing the value

function in combination with reinforcement learning optimisation techniques to

solving them. A successful example was the usage of a multi-layer perceptron as

a Q-value function approximator, Neural Fitted Q-Iteration (NFQ) Riedmiller

(2005). This approach was successfully applied to the standard RL benchmark-

ing problems (carte pole, acrobat, mountain care), but no partially observable

setting was considered. Later in Hausknecht and Stone (2015) the authors ap-

plied a Deep Recurrent Q-Network (DRQN) (extension to the work in Mnih

(2015)) to capture the history of states in a game of Pong where the state space

was occluded half the time. By introducing a long term memory component the

POMDP in effect is turned into a MDP and the authors apply an optimisation

approach similar to FQI.

The advantage of these approaches is that problem with very large state

spaces or continuous state spaces can be solved by using standard machine learn-

ing function approximation methods. These methods are easier to understand

29

and implement and adapting POMDP methods to them is relatively straight

forward. This is one particular way of dealing with the curse of dimensionality

but not the only way. An alternative is to find a latent belief space which is of

a much lower dimension than the original and perform value iteration in that

space.

Latent Value Iteration

Latent belief space or belief space compression is a way of addressing the

curse of dimensionality. The assumption is that although the belief space is of

considerable size (thousands of dimensions) a latent belief space exists which

is considerable smaller in terms of dimensions (a dozen). A first approach of

compressing the belief is to transform it into a set of sufficient statistics (first and

second moment for example) and treat the problem as a fully observable MDP in

which the states are sufficient statistics of the beliefs. In Roy and Thrun (1999)

the authors do just this, they compressed the filtered belief to its mean and

entropy and performed VI on this augmented state space in a navigation task in

which the goal was to reach a location with a minimum amount of uncertainty.

This approach, called Augmented MDP (AMDP), brings a great simplification

to solving the POMDP but at the cost of a lossy belief compression.

In further developments Roy (2005) compared both PCA and exponential-

PCA (E-PCA) Roy and Gordon (2003a), as a means of belief compression tech-

nique to find a low dimensional belief space. The authors showed that an original

belief of thousands of dimensions could be compressed to a 10 dimensional belief

space whilst retaining most of the information. This approach was shown to be

superior to AMDP. It requires however computationally expensive transitions

back and forth between the low and high dimensional belief states, a necessary

step for the the application of VI. The latest work in this area is Li et al. (2010)

which investigates the use of non-negative matrix factorisation in combination

with k-means clustering as a way of compressing the belief. There method

showed some improvement over the E-PCA approach but was only evaluated on

discrete benchmark problems.

Belief compression as a means of reducing the curse of dimensionality is

an interesting approach. The caveat is that it requires discretising the belief

to a fixed grid, collecting many samples and learning an appropriate set of

belief-basis eigenvectors. As such, the larger the state space, the larger the

dimensionality and thus more samples are required to find a suitable set of basis

belief-eigenvectors. Surprisingly, belief space compression methods have not had

wide attention although they shown promising results.

Summary: Value Iteration

30

Value Iteration seeks to find an optimal policy directly through applying

the Bellman equation to a belief-MDP (POMDP) and most of the research has

focused on finding ways to alleviated the curse of dimensionality so that VI

remains tractable in belief space. The first approach, PBVI, considers a rele-

vant subset of the belief space. Because of the complexity involved in keeping

the PWLC property of the value function which restricts its use in large state

spaces, alternative approaches discard this property in favour of approximating

the value function through machine learning regression techniques. These ap-

proaches are considerably more simple to implement than PBVI solvers which

require heuristic pruning techniques and are difficult to port to continuous state

spaces in general. Alternative approaches have considered finding a latent be-

lief state and perform value iteration in this space. There has however been

relatively little work in the latent belief space approach.

Overall, the above approaches consider mostly discrete actions even for the

large state (history states) MDPs which have been gaining recent attraction.

There are only a few exceptions and these resort to sampling strategies or the

usage of paramaterized high level actions. The next approach we consider ad-

dresses the problem of continuous actions directly and are termed policy search

methods.

2.3.2 Policy search

The approaches seen so far use a value function to encode the problem. When

the optimal value function is solved, a policy can be derived from it by taking an

action which maximises the value function at each time step, a process known

as making the policy greedy with respect to the value function. This requires

learning a high dimensional value function of the belief space and the resulting

policies are not necessarily smooth, as small changes in the value function can

lead to drastic changes in the policy. Even small approximation errors in the

value function can lead to very bad greedy policies Baxter and Bartlett (2000).

There is no doubt that deriving a policy from a generic value function for highly

continuous policy, such as in the case of controlling an articulated robotic arm,

is not easy.

This has lead to an alternate approach in which a policy is learned directly

without a value function. An initial policy is defined in terms of a paramaterized

function, πθ, and the utility is a function of the policy parameters, u(θ). The

optimal policy is found by searching for the parameters θ which will maximise

the utility function. This is can be accomplished through various optimisation

methods: gradient descent, gradient free, expectation-maximisation, etc...

Gradient: policy search

31

A very early type of policy search was REINFORCE (likelihood ratio) al-

gorithms first introduced by Williams (1992). From a set of task executions,

also called roll-outs, the gradient of the utility function is estimated and used

to improve the policy through gradient ascent. The key aspect of this approach

is that the derivative of the cost function is independent of the state transition

model and as a result the gradient can be estimated by Monte Carlo meth-

ods. Application of this methodology to a partially observable setting lead to

Gradient POMDP, GPOMDP Baxter and Bartlett (2000) in which the authors

developed a conjugate stochastic gradient ascent algorithm to optimise a policy

as a function of the current observations. To be optimal, the whole history

should be considered or some sort of memory (compressed history) should be

introduced. In an extension to this method Aberdeen and Baxter (2002), the

authors used a HMM to represent the POMDP which they learned the pa-

rameters in conjunction with those of the policy. These are early examples

of policy search approaches which are able to fair well on the early POMDP

benchmark problems (Heaven & Hell). The main difficulty is to reduce the bias

and variance of the gradient estimate which preoccupies most gradient based

approaches. Optimising the utility function via stochastic gradient ascent typi-

cally needs thousands of gradient estimates such that in expectation terms the

parameters are maximising the cost function. An approach which mitigates this

problem, coined Pegasus Ng and Jordan (2000), removes the stochasticity from

the optimisation by setting the seed of the random number generator constant.

A policy evaluation becomes deterministic and by repeating this process many

times (different random seeds) the stochasticity is present between the different

evaluations and not within them. The end result is the same as stochastic gra-

dient ascent (if repeated sufficient times) but is far easier to optimise individual

non-stochastic problems. This policy search method was used to learn a set of

controllers for a radio controlled helicopter Kim et al. (2004), which is consid-

ered to be one of the very first successful applications of RL to a MDP/POMDP

problem. Recent approaches to gradient based methods include grasping objects

under Gaussian position uncertainty Stulp et al. (2011), Stulp et al. (2012).

Expectation-Maximisation: policy search

One drawback of gradient based optimisation is that the learning rate plays a

significant role on the speed of convergence. An alternative approach consists of

using Expectation-Maximisation (EM) methods Kober and Peters (2009) which

do not require a learning rate. Successful applications include: ball-in-a-cup, a

humanoid learning the skill of archery Kormushev et al. (2010b), learning how to

flip a pancake Kormushev et al. (2010a) and keeping balance on a two-wheeled

robot Wang et al. (2016). These are just some examples of the application of RL

to continuous action and state space problems. When uncertainty is present,

the maximum likelihood state estimate is typically taken and is treated as the

32

true state. A good surveys on policy gradient search methods can be found in:

Deisenroth et al. (2011), Kober et al. (2013).

Actor-critic: policy search

Gradient and EM methods only optimise the parameters of the policy, also

known as actor only methods. An alternative is to have a separate parameteri-

zation of the value and policy functions. This approach is known as an Actor-

Critic, in which the gradient of the utility function is used both to update

the value and policy functions. It has been shown that this approach reduces

the variance of the gradient estimate and allows to smoothly change the policy

which is desirable when controlling a robot for instance, see Grondman et al.

(2012a) for a survey highlighting differences and advantages of policy search vs

actor-critic methods. A successful application of actor-critic is (episodic) Natu-

ral Actor Critic (eNAC) Vijayakumar et al. (2003), Peters and Schaal (2008b),

a method which uses the natural gradient of the value function to update the

parameters of a policy. The advantage of using the natural gradient is that it

guarantees small changes in the distance between the successive roll-out trajec-

tory distributions. Previous policy gradient methods did not have such guaran-

tees, since small parameter changes of the policy could lead to large changes in

the roll-out distributions, which is undesirable. In terms of performance NAC

converges faster than GPOMDP and has been applied to learn Dynamic Motor

Primitives (DMPs) to control a humanoid robot.

Summary: policy search

For problems in which the state and action space are continuous, policy

search is preferred to pure value iteration based methods, which is the case

for articulated robotics. In this case, the policies are only guaranteed to be

locally optimal as oppose to the VI methods which can find global optimal

policies. However if the parameters of the policy are initialised such that it

is in the vicinity of the global optimum of the utility function, then the local

optimal will be global. A lot resides on the initialisation and dimensionality of

the parameter space of the policy. In terms of using them to solve POMDPs,

most examples, at least for robotic applications, act according to the Most

Likely State (MLS) or are a function of a history of observations. In such a

way the partial observability is implicitly encoded into the policy as opposed

to explicitly as was the case for PBVI methods.

Policy gradient methods are iterative and generally require a lot of data

to be able to achieve a good policy. Also often the policies learned are not

transferable between different tasks and have to be completely relearned. This

of course depends on the representation of the state space which if task invariant

33

causes no problem, but unfortunately this is not the case. The next approach to

treating uncertainty is more aligned with addressing this last issue of re-usability.

These are the planning methods.

2.3.3 Planning

Belief space planners leverage the power of traditional planning and optimal

control techniques such as: A*, D*, RRT, Dijkstra and LQR to the belief state

space. In most of the following techniques (with a few exceptions), a fundamen-

tal assumption made is that the motion and measurement models are Gaussian

and as a result, a point in the belief space can be represented by the first and

second moment: the mean and covariance. An important distinction with VI

and Policy search methods is that planners do not solve for a policy. These are

online methods in the sense that they have to re-compute a set of actions at ev-

ery time step as oppose to a policy which can directly query which action should

be applied given the current state. The generic objective function used in belief

space planning penalises for the amount of uncertainty at the goal and a cost is

incurred for every step taken. The planned path will be a compromise between

the exploitation actions, which seek to go directly to the goal, and information

gathering actions, which seek to reduce the uncertainty.

Belief space road maps

An example of belief space planning is the application of Probabilist Road

Maps (PMR) to a belief state space, Prentice and Roy (2009), referred to

as Belief Road Maps (BRM). By taking advantage of the linear structure of

the Kalman Filter update the authors show that the covariance matrix can be

factorised such that a sequence of motion and measurement updates between

two belief points in the BRM can be computed by a single linear operation

parametrised by the current belief. The key advantage of this approach is that

it allows for rapid replanning and is able to scale to large state spaces. The

authors evaluated their planner in the MIT campus (simulated). Applications

of this methodology include the control of an indoor quadrotor helicopter He

et al. (2008) and indoor navigation (akbar Agha-mohammadi et al. (2011), akbar

Agha-mohammadi et al. (2014)) (based on Feedback-based Information Road

Maps FIRM , a similar approach in spirit to BRM).

Optimal control

Another main approach is based on optimal control theory, from which Lin-

ear Quadratic Controllers (LQG) have been adapted to a belief state space. In

34

this setting the dynamics are considered linear (or linearizable) and the mo-

tion and measurement processes are Gaussian. The main difficulty of applying

LQG to a belief space is that future observations are unknown, which implies

that an expensive marginalisation of the observations has to be done. In Platt

et al. (2010) the authors assume instead that at each time step the measurement

obtained would be the maximum-likelihood observation. This assumption

removes the stochasticity from the belief update (since the observations are con-

sidered known) and receding horizon optimisation techniques can be applied.

These optimisation methods require a nominal trajectory which is generally

generated assuming a fully observable state space with standard planning al-

gorithms like RRT Van Den Berg et al. (2011), and subsequently refined by

dynamical programming methods until a local optimal solution in attained. In

Erez and Smart (2010), the authors parametrized the belief by a mixture of

two Gaussians to to tackle unilateral constraints and applied their planner to

a 16 dimensional attention allocation problem. The optimisation method used

was Differential Dynamic Programming (DDP) and maximum likelihood ob-

servations were assumed. For implementations based on this approach, when

the planned belief trajectory deviates from the observed belief, replanning takes

place. In recent improvements, van den Berg et al. (2012), the assumption of

maximum-likelihood observation was removed successfully and has been applied

in a simulated surgery problem, Sun and Alterovitz (2014), in which a needle

has to be navigated through a body without entering into contact with vital

organs.

Most optimal control methods assume that the belief space can be parametrized

by a single Gaussian function, which can be restrictive. There have been a few

approaches which consider non-Gaussian belief state spaces. In Platt et al.

(2012) the authors introduce a non-Gaussian belief. The approach initially finds

the Most Likely State (MLS) and then samples a set of hypothesis states from

the belief. The cost function, with respect to the ML and sampled hypothesis,

results in a sequence of actions which will seek to generate measurements which

will prove or disprove the hypothetical states with respect to the ML state whilst

also trying to reach the goal. Recent work Zito et al. (2013) incorporates this

optimisation method into a grasping problem under non-Gaussian pose uncer-

tainty. The method in question is able to perform well with only a few drawn

samples from the belief. However the object was not picked up and as a result

the stability of the grasp was not evaluated.

Summary: planning

Most advances in planning methods in belief space have been in optimal con-

trol and were able to show applicability to high-dimensional belief state spaces

in a variety of applications. To be fast these methods have to make assumptions

with respect to the shape of the belief (Gaussian) and the type of future obser-

35

vations which are available. These can be restrictive but in many applications

(such as those which use vision) the uncertainty of objects in the world are often

parametrized by Gaussians. The main difference between optimal control ap-

proaches and policy search methods is that the computational burden is shifted

to online resolution of actions as oppose to constructing a policy offline through

repeated interactions with the environment which can be very time consuming.

The advantage of planning methods is that they are more flexible than para-

metric policies in the sense that they are more generic. They solve the objective

function online and can be used in different environments, as oppose to a policy

which would have to be re-learned.

2.3.4 Heuristics

The methods discussed so far can be considered computationally expensive

and/or constraining in the type of belief which can be used (typically a uni-

modal Gaussian). If the problem domain is more complex or an expensive

optimisation problem is not necessarily required, simple heuristic methods can

achieve a satisfying solution and in some cases the equivalent of a full blown

POMDP solver. Heuristic methods for dealing with uncertainty are widespread

in robotics due to the high dimensionality and continuity of the state space. We

consider here two heuristic approaches, myopic and information gain. Myopic

ignores most of the variance in the uncertainty and considers only the Most

Likely State (MLS) whist information gain considers actions in terms of their

uncertainty reduction.

Myopic & Q-MDP

Myopic policies consider only the most likely states, which in the case of a

Gaussian belief is the mean, and act accordingly. These types of approaches

ignore the variance in the uncertainty and risk to fail catastrophically or result

in sub-optimal behaviour. MLS is typically used in complicated domains such

as grasping, especially when the actual shape of the object is considered to

be unknown. A successful approach to this problem is to have a prior non-

parametric regressor function representing the shape. As contacts are made

with the object more points are added to the regressor improving the shape

constructed by exploring the unknown object and gradually acquiring points.

The uncertainty of the shape in a region is typically a function of the number

samples. At this point either an exploratory movement is done to move a finger

towards a region of high uncertainty (the MLS region) or a grasping attempt

is carried out. In Hollinger et al. (2012) an AUV maps the hull of a ship by

constructing a mesh and encoding the uncertainty of the mesh with a Gaussian

Process (GP). A set of viewing locations, where there is uncertainty (MLS), are

36

computed and a trajectory is obtained by solving a travelling salesman problem

whilst seeking to maximise coverage of areas with high mesh uncertainty. In

Chen and von Wichert (2015) a grasping controller uses the uncertainty, encoded

by GP, to guide an exploration process. The fingers would move towards regions

of high uncertainty whilst keeping contact with the object. For a good review on

related methods for grasping objects under shape uncertainty consult Li et al.

(2016), where the authors also use a GP based method to encode the shape

uncertainty. The exploration methods for all these methods are in the same

in spirit; move towards regions which have high uncertainty (exploration) and

when the uncertainty is sufficiently low perform a grasp (exploitation).

An improvement is to consider the variance in the uncertainty and not just

the MLS. Such an approach is a called Q-MDP Littman et al. (1995), Nowé et al.

(2012) in which the underlying MDP is first solved assuming the state space to

be fully observable. Then an action is taken which maximised the expected MDP

value function weighted by the belief. This approach only considers uncertainty

for one time step but it has been shown to be efficient in some domains (Thrun

et al., 2005a, Chap. 16). The negative aspect of this approach is that no

information gathering actions emerge and the method will fail in problems where

this is necessary (Heaven & Hell benchmark problem for instance). Most PBVI

based research compare their algorithms against a Q-MDP agent and PBVI

always fairs better. For a comparison of different heuristics such as Q-MDP

and MLS consult Cassandra et al. (1996) and for a more recent comparison

Lin et al. (2014). A recent application of this method include gaze allocation

problems Nunez-Varela et al. (2012) where the uncertainty originates from the

limited field of view. In Hauser (2011), Q-MDP is used to evaluate nominal

trajectories generated from RRT where starting positions were sampled from

the initial belief. A recent follow up on this idea, Vien and Toussaint (2015a),

considers a task in which a robot has to localise itself with respect to a table. A

set of macro actions are evaluated in a Q-MDP framework to achieve this task

in which each macro action is solved by an optimal control method.

Both MLS and Q-MDP do not fully consider the uncertainty. This of course

leads to great computational gain but at the expense of the quality of the poli-

cies, which can be very sub-optimal in some cases. It is known that for increasing

the chance of success, a policy which deals with uncertainty needs both goal

orientated and information gathering actions. The next heuristic approach,

which we call information gain, is based on this concept.

Information gain

Information gain is the decrease or increase of uncertainty resulting from

the application of an action. It is obtained by forward simulating the belief and

computing the difference between the current entropy and resulting entropy of

the simulated action. The vast majority of applications consider a set of mar-

37

co/parametrised actions. In this set there are typically goal orientation actions

which will act as if the state space was fully observable (MLS move) and in-

formation gathering actions, whose goal is to reduce the amount of uncertainty

such that the goal orientated actions have a higher chance to succeed. The cost

function which is optimised is typically a compromise between the distance/time

taken to reach the goal and the amount of information gained while executing

the task. An early example considered path planning problem for a robot in the

National museum of American history Roy et al. (1999). An information gain

map was first computed off-line in which a map cell gave an estimate of how

much information would be acquired at this location. This was incorporated

into an objective function which optimised the information gain along a route

with respect to the time taken to reach the goal. The path was given by solv-

ing the objective function using dynamic programming. In this case no explicit

actions where defined, but the uncertainty was taken into account by weighting

informative regions more than open space. The result was trajectories which

stayed close to walls. Information gain methods are often used in SLAM appli-

cations because of the extremely high dimensionality of the belief space which

is of the map and robot position. In Stachniss et al. (2005) a mobile robot

is exploring and building a map of an office floor and a set of macro actions

are available. A portion of the actions are exploratory and lead the robot to

unexplored areas which results in an increase of uncertainty in the overall map

whilst the other actions brings the robot back to already explored areas result-

ing in an improved estimate of the map. For each action the information gain

is computed and incorporated in an cost function. A one time step look head is

done for each action, which potentially implies an expensive forward simulation,

and the action giving the maximum information gain is chosen. This approach

has been shown to be effective for large state space problems, notably in Active

SLAM navigation Vallve and Andrade-Cetto (2014).

Information gain maximisation is not only restricted to navigation, there

are many examples in grasping where this approach is used. Examples include

tactile driven exploration such as in Hsiao et al. (2010) where a parametrised

set of goal orientated and information gathering actions are used in the context

of estimating the pose parameters (6D) of a power drill. The information gain

of each action is incorporated into a cost function and the best action is chosen

accordingly. The authors report a breadth first search depth of one action to

achieve a good performance for the task. Later grasping approaches have built

on this with different modifications to the information gain metric Javdani et al.

(2012) and there have been successful applications such as finding a door handle

Hebert et al. (2013) and opening a door.

Summary: heuristic

Heuristic methods make strong assumptions which alleviates both the curse

38

of dimensionality and the curse of history associated with POMDP problems.

Either the MLS is considered (curse of dimensionality) or the planning horizon

is restricted to one time step look ahead (curse of history) as it is the case for

Information Gain methods. Heuristic methods in robotics have been regaining

traction. In the early days of robotics methods such as Q-MDP, MLS, infor-

mation gain maps and ”best fields of view“ were the predominant methods for

considering uncertainty in policies and planning algorithms. This was simply

due to the computational limitations of the time and POMDP solvers could only

handle a few states before the arrival of PBVI methods. Since more sensory in-

formation is available and used in robotic systems it is again computationally

expensive to compute optimal policies. In many cases spending large compu-

tational resources does not result in policies which are obviously superior to

simple and intuitive heuristics. Lately many DARPA2 teams when faces with

state uncertainty resort to information gain heuristics, for instance.

2.3.5 Summary: literature

In the literature we characterised four approaches of how artificial agents

have been programmed to reason under uncertainty.

When control algorithms were first being applied to mobile robotics uncer-

tainty was handled with heuristics: MLS, Q-MDP and other techniques not

fully discussed such as next best view methods. Practically speaking the com-

putational resources at the time were too limited and it was unfeasible to solve

optimally for a POMDP problem. Also it is not clear at what time the robotic

community started to apply results from operational research to robotics in the

case of partial observability. Certainly it is not until the advent of the first

point-based value iteration methods that there was a shift of interest towards

improving POMDP solvers such that they could be applied to robotic domains

(navigation & manipulation). When evaluated against heuristics methods it

was clear that in some scenarios (Heaven & Hell problem) the POMDP solvers

did far better. Value Iteration methods have not been widely used in cases

where the action space is continuous. There have been efforts to adapt them to

continuous actions space, however there is yet no concrete evidence that these

methods scale. If the robotic domain requires continuous actions then either

policy search or optimal control methods are preferred. Policy search methods

were first considered since they are part of the markov decision process family

which is within the POMDP framework.

Policy search methods consider the uncertainty implicitly. These methods

work well when there is relatively few control parameters and behaviour to be

learned are either reflexes (like in the case of the autonomous helicopter) or

primitive actions such as picking up an object. The uncertainty considered in

2https://www.youtube.com/watch?v=9Oav3JajR7Q

39

the reviewed literature on policy search methods is predominantly characterised

by a Gaussian function. It is not clear how well policy search methods would

scale to situations in which there is a lot of uncertainty and so fare there has

not been a lot of emphasis on comparing policy search methods with heuristics.

Optimal control methods came later, after policy search, and have recently

started to gain traction since the adaptation of LQR to belief state spaces.

As for policy search methods the uncertainty is considered Gaussian although

recent research has been addressing this. The advantage of optimal control with

respect to policy search methods is that they are more flexible since the objective

function is resolved online. But at the expense of an increased computational

cost.

Heuristics are still actively being used in research and very successful appli-

cations in the DARPA robotic challenge use heuristic approaches. The probable

reason is the volume of sensory information and the size of the control architec-

ture in robotic platforms competing does not leave room for anything else. Es-

pecially when considering project management constraints and reliability. That

said, maybe there is no reason to use complicated methods. We note that there

has been a significant absence of comparison between optimal control, policy

search and heuristic problems on the same set of benchmark problems.

In Figure 2.8, we summarise attributes we consider important in the four

approaches we reviewed. We bring attention to the typical type of actions and

problems which these methods address. Note that we consider both Policy

search and Value Iteration methods as being off-line. Although many authors

say that the policy can be executed at any time, the optimal solution is not

attained until after many interactions with the environment. This is not the

case for Optimal Control and most Heuristic methods which give a solution on

the spot, which we consider to be on-line methods.

The performance of all the methods mentioned in the literature review cru-

cially depend on the quality of exemplary demonstrations. For instance,

PBVI require search heuristics to find an optimal set of belief points, the qual-

ity of the optimal policy of policy search methods depend on the exploration-

exploitation trade-off and optimal control methods strongly depend on the initial

nominal trajectory. In a way this is intuitive, if you initialise your search method

or algorithm with an initial solution which is of high quality (close to optimality)

then which ever optimisation method used PBVI, Policy Search, Planning,... a

solution should be obtained with computational ease. The question is then: how

to generate such exemplary demonstrations ?

2.4 Approach

As discussed in the literature summary, the initial data provided to the

solvers plays an important role in the optimisation time and quality of the final

40

Acting under
uncertainty

Policy
search

Planning

Heuristics
Value

Iteration

• local
•manipulation, reflexes
• continuous actions
•off-line

•global
•navigation
•discrete actions
•off-line

• local
•navigation
• continuous actions
•on-line

• local
•navigation
•macro actions
•on-line

Figure 2.8: Summary of the aspects of the reviewed methods. Local refers to the optimality
of the solution, on/off-line refers to if the solution is computed on the stop (on-
line) or many simulations are required to obtain the solution (off-line).

policy or plan. A popular approach known as Programming by Demonstration

(PbD) is a way to provide initial exemplary data. PbD is a methodology whose

aim is to achieve the transfer of knowledge and behaviour from a teacher to an

apprentice. The teacher is usually a human expert (this is not a constraint)

who demonstrates to an apprentice how to accomplish a task. In the case of

articulated robots, kinesthetic teaching is often preferred. The teacher would

hold the robot, which is back drivable, and demonstrate to it trajectories. From

the trajectories the states and actions, at each time step, are recorded and stored

in dataset D = {(x, a)} which is then used to learn a a policy πθ(x, a), usually

a regressor function, which encapsulates the taught behaviour. Other ways are

possible such as using vision or a wearable interfaces which are common to both

teacher and expert. We will not go into a great detailed review of PbD, for

an in depth review the reader is referred to Billard et al. (2008), Billard and

Grollman (2013). PbD has had many successful applications when the state

space is considered observable but for the latent state case there are very few

examples.

In this thesis we apply the PbD framework to a partially observable setting;

41

Figure 2.9: Three steps in learning a POMDP policy from human demonstrations: First
gather the belief-action dataset, second compress the beliefs and third learn a
generative policy.

we want humans to teach robots how to act under uncertainty. We know that

generally speaking we are better at handling uncertainty than artificial agents,

especially in haptic and tactile tasks. A hypothesis for this observation is prob-

ably that our perception capabilities are much higher and acute than current

robotic software and hardware systems. To be able to study the ability of hu-

mans as teachers in a POMDP setting, we chose tasks in which a high level of

uncertainty is present. For this reason we restrict ourselves to tasks in which the

subjects can only use, their sense of touch. We namely consider search tasks

in which a human is searching for an object whilst blindfolded. In summary

we seek to learn control policies for robots in tasks which have the following

problem specific attributes:

• Blindfolded search tasks, no vision.

• Sparse haptic and tactile information.

• Continuous action and state space.

• High amount of non-Gaussian uncertainty.

Problem attributes

In our approach, the robot apprentice observes the human teacher demon-

strate a search task. As the human teacher searches, he makes contact with var-

ious aspects of the environment trying to localise himself whilst looking for the

object in question. During the demonstration the apprentice infers the humans

beliefs by observing his actions and stores them into a dataset D = {(b, a)}.
Given this belief-action dataset we learn a generative distribution πθ(b, a) of

the behaviour exhibited during the search which is then transfer to the robot

apprentice. In Figure 2.9 we illustrate the PbD-POMDP data pipeline.

This is the general concept but there are a few caveats which make this task

not as straight forward as it seems.

• The belief state is unknown: When the robot apprentice is watching

the human perform a search task under state uncertainty, it is unable to

observe the belief state of the human. All that the agent can observe

directly are the actions of the teacher. We make two assumptions, the

first is that the apprentice can infer the observations of the teacher by

examining the teachers relation with the environment and secondly the

42

initial uncertainty of the teacher is assumed to be known. From these two

assumptions, the sequence of belief states can be inferred via a Bayesian

filter. This implies that the mental belief state of the human teacher is

in fact known given the assumptions. We give more details in Chapter 3

on the validity of these assumptions and discuss their relation to Bayesian

Theory of Mind (BoTM).

• Learning a policy as a function of non-parametric beliefs: Given

that we are considering high levels of uncertainty and the observations

are sparse, in the form of contacts, no parametrisation of the belief in

terms of a Gaussian function would be adequate. In this thesis all the

considered beliefs will be from the non-parametric Bayesian filter family,

such as particle filters, which allows for a lot of flexibility. Learning a

policy directly as a function of a particle filter is intractable. First in non-

parametric filters there is typically thousands of states and in efficient

particle filters the number of parameters varies over time. We compress

the belief into the most likely state and the entropy. In this way the size

of the belief state is fixed and low dimensional.

In Figure 2.10 we illustrate an example of human teaching an apprentice

robot how to search for objects (alarm clock and socks) in a state of high un-

certainty, the human is blindfolded. Given what the apprentice can observe he

must infer the beliefs of the teacher (red, blue and orange probability density

functions).

• Reactive policy: The control loop cycle, which computes the belief state,

compresses it, and computes the resulting action to take, should happen at

around 10 to 100 Hz. This range may seem arbitrary but is in fact based

on the humans control ability which at the highest cognitive level a delay

in response is around 100ms and at the lowest reflex level at around 10-20

ms Winter (2009). This is to draw attention that the full control loop,

belief filtering, compression and action prediction should all happen within

this range. See Figure 2.11 for an illustration of the control architecture

used.

• Scalable belief filter: In scenarios in which there are multiple objects

being searched for by a human teacher, the joint belief distribution of a

non-parametric Bayesian state space filter will become quickly computa-

tionally intractable. This motivates the development of a new type of

SLAM filter methods which can scale in situations in which observations

are very sparse.

All of the above points are the motivation behind many of the decision

choices we take and use in the subsequent chapters. They are necessary such

to be able to successfully teach robotic systems to act as humans in partial

observable states.

43

teacher

alarm clock

socks

Figure 2.10: Demonstrations: An apprentice is looking at a human teacher who is search-
ing for the alarm clock’s button and his pair of socks. The apprentice assumes
the structure of the original beliefs the human teacher has with respect to his
position and that of the alarm clock and socks, these are represented by the
red, yellow and blue density functions. Compression: Given the data set of
beliefs and actions obtained from the demonstrations, the beliefs is compressed
to a fixed parametrisation. Learn policy: A generative policy, πθ(g(b), a)
is learned from the actions and compressed beliefs and can be executed ac-
cording the schematic on the right. SE represents any Bayesian state space
estimator, which takes as input, the current observation, belief and action and
outputs the next belief state.

Figure 2.11: Control architecture of the apprentice robot. The control loop should run
between 10-100Hz. Given an applied action, the world returns an observation
which is integrated by the State Estimator (SE) to give the current belief.
The belief is the compressed and given as input to the policy.

44

Chapter 3

Learning to reason with
uncertainty as humans

The conclusions drawn from the literature survey in Chapter 2 are that non-

heuristic methods for planning and control rely heavily on the initial data pro-

vided to their respective optimisers. An ideal initial set of behaviour should be

comprised of explorative and exploitative actions so that a final optimal policy

can quickly achieve the balance between minimising uncertainty and solving the

task at hand. This is especially true for Reinforcement Learning (RL) methods

which make use of explorative actions to be able to find an optimal policy. In

many RL applications random exploration or Gaussian noise perturbation is

sufficient to find an optimal policy. This is the case when either an exhaustive

search of the action space is possible (mountain cart, inverted pendulum, etc...)

or in policy search methods where the policy is parametrised by a few parame-

ters. In continuous action-state space POMDPs, when a generic non-parametric

policy is desired this is not feasible, especially when the decision horizon is long.

Continuous action-state space POMDPs applications have predominantly fo-

cused on cases in which the uncertainty can be quantized by a single Gaussian

parametrisation. This representation can be constraining since it requires the

observation likelihood to be Gaussian as well. This assumption is restrictive

and ill-suited for haptic search tasks in which observations are discontinuous

and occur as impulses.

In this chapter, we demonstrate that human foresight and intuition can be

leveraged as a means of solving the exploration/exploitation dilemma under

partial observable conditions. Human beings are versatile in their ability to

accomplish tasks which are considered to be complex by current robotic stan-

dards. This perceived ability which we have over current robotic systems, due

to our prior domain knoweldge and experience, can be extracted, encapsulated

and transferred to a robot apprentice.

To demonstrate the application of the transfer of behaviour from a human

teacher to a robotic apprentice we apply the framework outlined in Chapter 2,

Section 2.4 (PbD-POMDP) to a blindfolded haptic search task. In our blind-

folded search task, both a robot and a human must search for an object on a

table whilst deprived of vision and hearing, illustrated in Figure 3.1. The robot

and human both have prior knowledge of the environmental setup making this

a specific search problem with no required mapping of the environment, also

45

known as active localisation. In Figure 3.1, a human has his sense of vision and

hearing impeded, making the perception of the environment partially observable

and leaving only the sense of touch available for solving the task. The hearing

sense is also impeded since it can facilitate localisation when no visual infor-

mation is available and the robot has no equivalent giving an unfair advantage

to the human. By impeding hearing we align the perception correspondence

between the human and robot.

By representing the belief of the human’s position in the environment by a

Particle Filter (PF) and learning a mapping from this belief to hand actions

(velocities) with a Gaussian Mixture Model (GMM), we can model the human’s

search process and reproduce it for any agent. We further categorize the type

of behaviours demonstrated by humans as being either risk-prone or risk-averse

and find that more than 70% of the human searches were considered to be

risk-averse. We contrast the performance of this human-inspired search model

with respect to Greedy and Coastal Navigation search methods. Our evaluation

metric is the distance taken to reach the goal and how each method minimises

the uncertainty. We further analyse the control policy of the Coastal Navigation

and GMM search models and argue that taking uncertainty into account is more

efficient with respect to distance travelled to reach the goal.

Emulation of search behaviourHuman demonstrations

1

2

Human belief model

1

Transfer of search strategies

2

Figure 3.1: Blindfolded search task Left: Search task, a human demonstrator searching
for the green wooden block on the table given that both his hearing and vision
senses have been impeded. He starts (hand) at the white spot near position (1).
The the red and blue trajectories are examples of possible searches. Middle:
Inferred belief the human might have with respect to his position. If the human
always starts at (1) and his belief is known, all following beliefs (2) can be
inferred from Bayes rule. Right: WAM Robot 7 DOF reproduces the search
strategies demonstrated by humans to find the object.

There are two assumptions we make when applying Programming by

Demonstration, PbD (also known as Imitation Learning), to the POMDP task

described above. The first assumption is that the human teacher’s spatial cog-

nitive abilities are good enough to accomplish the task in a consistent fashion.

46

In other words demonstrations should not be random and a pattern exists. The

second assumption is that human’s beliefs inferred by the apprentice are close

to the actual belief of the human.

3.1 Outline

• 3.2 Background

We review aspects of the literature in robotics and cognitive science which

are related to spatial navigation which consider scenarios with limited per-

ceptual information. We review related literature from Spatial Navigation,

Theory of Mind and Programming by Demonstration.

• 3.3 Experiment

The table search experiment protocols are described and we detail how

to learn and transfer search strategies from human teachers to a robot

apprentice. A total of 15 human teachers participated and each gave 10

demonstrations, giving a total of 150 searches.

• 3.4 Formulation

We detail the implementation of the human belief in terms of a Particle

Filter (PF). This includes the measurement and motion models. We de-

scribe how we compress the belief particle filter in terms of the most likely

state and differential entropy.

• 3.5 Policies

– 3.5.1 Modelling human search strategies

We detail the implementation and parametrisation of a Gaussian

Mixture Model (GMM) policy encapsulating the human search strate-

gies and how it synthesises new searches.

– 3.5.2 Coastal Navigation

We detail the implementation of a Coastal Navigation policy, used

as a comparison with the GMM policy.

• 3.6 Results

We conduct three types of analysis: we quantify the behaviour present in

humans and policies in terms of riskiness; we qualitatively evaluate the

differences between the GMM policy learned from human demonstrations

and the Coastal Navigation policy; we evaluate the distance taken to find

the goal for a set of four search policies, including the GMM.

3.2 Background

47

3.2.1 Spatial navigation

Spatial navigation, Wang (2007), Wolbers and Hegarty (2010), focuses on

the role that sensory perception (vision, vestibular, proprioception ...), motor

control and mental cognition have on the navigational ability of humans, an-

imals and insects. A central aspect of spatial navigation is the way in which

we mentally represent the geographical world, known as a cognitive map (men-

tal representation of environment first proposed by Tolman, 1948) and how we

update our pose estimation in this map. The aspects of both construction and

correction of a cognitive map have been studied in great depth, Wolbers et al.

(2008). There is reported evidence that we use both vestibular and proprio-

ception in inferring self-motion in order to update our position through dead

reckoning (also known as path integration). Given the estimated position we

then use external cues such as geometric (the shape of a room) and features

(the colour of the walls), to correct our position. The actual representation of

our position and environment in our cognitive map has been proposed, Burgess

(2006), to be either encoded in our own frame of reference (egocentric) or in

a frame of reference which is independent to us (allocentric) and acts like a

standard paper map or both. This cognitive map enables us to reason about

the relations between our own position and that of other items and landmarks

present. This representation also facilitates our ability to localise ourselves and

plan novel routes when needed.

In Wang and Spelke (2000), the authors studied the effect that disorientation

has on blindfolded subjects’ ability to recover their heading, which is necessary

for re-localisation. Through eight different experiments they concluded that

humans have an egocentric cognitive map.

Studies have also looked at the difference between congenitally blind, late

blind and sighted people in their ability to encode ego-allocentric cognitive maps.

In Pasqualotto et al. (2013), the authors dispose a set of seven objects (brush,

slipper, pan, dish, book, spoon, bottle) in the form of an array in a 12.5m × 9m

room. The objects are positioned on top of stools. During a training phase, ten

congenitally blind, ten late blind and ten blindfolded sighted people were taken

through the setup and touched all objects present. This guided exploration

(the experimenter leading the subject through the object array) was repeated

until the participants could correctly recall all the objects’ locations twice con-

secutively without help. In a testing room (no objects present) the partici-

pants were asked “Judgement of Relative Direction” questions and the accuracy

and response time were recorded. From the results the authors concluded that

blindfolded and late blinded participants used a allocentric representation of

the object array, whilst the congenital blind subjects use an egocentric model.

The cause of this difference is attributed to the role played by vision in the

development of the multisensory brain area, in which vision is necessary for the

48

development of an allocentric model.

Many similar experiments have been conducted and a summary can be found

in the following review Burgess (2006), where the authors explicitly state that

a consensus has formed; both egocentric and allocentric representations of the

environment are working in parallel. Current questions ponder whether allo-

centric models are part of the semantic memory as opposed to the procedural

memory used by the egocentric model.

Spatial cognition and memory

The quality of the human teacher in search tasks, which are partially ob-

servable in the terms of absence of vision, will strongly depend on the teacher’s

ability to maintain an accurate cognitive map of his environment. This im-

plies that the size of the environment and search task will have an effect on the

teacher’s ability to provide near optimal demonstrations. Early and influential

research into human’s short term memory was presented in 1956 by George

Miller in a seminal work, Miller (1956) (22’780 citations), in which he described

the “so called” magical number of our short term memory as being 7± 2 items,

known as Miller’s Law. This research was conducted on a one dimensional task

in which no spatial navigation was required. Since then there have been many

studies investigating the limits of short term memory.

In Lavenexa et al. (2015) a set of subjects had to find either 1, 3, 5 or 7

goal pads, among a grid array of 23 pads in a 4m × 4m room, within a 1

minute interval. They measured the subjects’ error in terms of the number

of locations visited before finding the goals. They found that on average the

subjects had to visit “1.6 ×#num goals” pads before achieving the task. The

authors concluded that in this spatial navigation task there was no magical

number which represents the limit of short term memory. In another spatial

navigation experiment, Iachini et al. (2014), the effect that the scale of the

environment has on the ego-allocentric representation is studied in blindfolded,

late and early blind subjects. The main findings were that cognitively blind

people have more difficulty in developing an allocentric representation of the

world.

In Stankiewicz et al. (2006), a search task in a virtual maze is conducted by a

set of human subjects. The aim is to investigate the limitations that perception,

memory and uncertainty have on human decisions in comparison with an ideal

agent (POMDP solution). The authors’ main findings were that as the size

of the maze increases the performance of the human subject decreases with

respect to the ideal agent, as human subjects are limited by the uncertainty in

their location and have difficulty in maintaining multiple hypotheses.

Summary: spatial cognition

49

The studies detailed above reported that if the environment is not overly

large and complex our cognitive model is sufficient to produce policies which

are on par with an optimal POMDP agent.

Our study seeks to transfer exploratory behaviour from human teachers to

a robot apprentice in a partially observable setting. In our search scenario the

environment is less than 3 meters in length and 2 meters in depth with a single

goal object to be found. Given this setup and the evidence from previous studies,

humans should be able to achieve this task with a high level of proficiency.

This is beneficiary since currently both humans and animals are better at

spatial navigation than robots Stankiewicz et al. (2006) especially when uncer-

tainty is present. The quality of the demonstrations will strongly depend on the

teacher’s short term memory in retaining a sufficiently accurate cognitive map

of the environment.

3.2.2 Human beliefs

A crucial aspect for the success of PbD-POMDP learning is that the appren-

tice be able to infer the human’s belief of his location whilst he is searching. In

others words the apprentice (human or robotic) has to infer the cognitive map

of the teacher.

The study of inference of another’s mental state is part of Theory of Mind

(ToM) Sodian and Kristen (2010), which is concerned with our ability to in-

fer beliefs, desires, intentions, perception, goals and current knowledge. In this

study, the apprentice will have to infer the teacher’s beliefs which we assume are

rational. A rational belief is a belief for which observations bring supportive

evidence and gradually increase the certainty of the belief. In a recursive for-

mulation this known as Bayesian Theory of Mind (BToM), where the Bayesian

component highlights the hypothesis that humans integrate information and

update their beliefs in a similar fashion to Bayes rule.

Due to the complexity in the number of sensory sub-components, such as

gaze following, and their interplay, required as a precursor to the development

of a ToM, much effort has been focused their development. Early work in

implementing a ToM in a humanoid robot was introduced in Scassellati (2002)

and is based on ToM models of Leslie (1994) and Baron-Cohen (1995). The

author focused on building basic skills such as face finding and distinguishing

animate and inanimate stimuli but left open the problem of the final interaction

between all the components.

In Butterfield et al. (2009), the authors model ToM as a Markov Random

Field which defines a joint probability distribution over a set of hidden actions

and observation variables. The functions of these variables are hand-crafted

for each experiment. The authors demonstrate that through a suitable param-

50

eterisation of the MRF they achieve results comparable to the predictions of

ToM. Recently in Devin and Alami (2016), ToM and planning architecture have

been integrated in a joint action collaborative human robot task, in which po-

sition, goal and action state of the human partner is maintained by his robotic

assistant.

Work on modelling human beliefs and intentions has been undertaken in

cognitive science, Bake et al. (2011), Richardson et al. (2012). In Bake et al.

(2006), the authors present a Bayesian framework for modelling the way humans

reason and predict actions of an intentional agent. The comparison between a

generic Bayesian model and the humans’ predictions yielded similar inference

capabilities. This when asked to guess the intentions of a goal oriented agent in a

2D world, which both the Bayesian model and the humans were observing. This

provided evidence supporting the hypothesis that humans integrate information

using Bayes rule. Further, in Bake et al. (2011), a similar experiment was

performed in which the inference capabilities of humans, with regard to both

belief and desire of an agent, were comparable to that of their Bayesian model.

Again they found the human’s inference was comparable to that of the Bayesian

model.

In our PbD-POMDP framework we make a similar hypothesis that humans

integrate information in a Bayesian way, however in a continuous domain. We

infer the belief that humans have of their location in the world during search

tasks.

3.2.3 Programming by demonstration & uncertainty

Programming by demonstration (PbD) is advantageous in the POMDP and

MDP contexts since it removes the need to perform the time consuming explo-

ration of the state-action tree to discover an optimal policy and does not rely on

any exploration heuristics to gather a sufficient set of belief points (as in point

based value iteration methods discussed in Chapter 2).

We expect humans to perform an informed search. In contrast to stochas-

tic sampling methods, humans utilise past experience to evaluate the costs of

their actions in the future and to guide their search. This foresight and expe-

rience are implicitly encoded in the parameters of the model we learn from the

demonstrated searches.

PbD has a long history in the autonomous navigation community. In Kasper

et al. (2001), behaviour primitives of the PHOENIX robot control architecture

are incrementally learned from demonstrations. Two types of behaviour namely

reactive and history-dependent are learned and are encoded by radial basis func-

tions. The uncertainty is implicitly handled by directly learning the mapping

between stimulus and response. In Hamner et al. (2006) the parameters of a

controller which performs obstacle avoidance are learned from human demon-

51

strations. The uncertainty is inherently handled by learning the relation between

sensor input and control output. In Silver et al. (2010) the objective function of

a path planner is learned from human demonstrations. The objective function is

a weighted sum of features corresponding to raw sensor measurements. This is

another example where the partial information of the state is taken into account

at the perception-action level, with the difference that instead of a policy being

learned the objective function from which it is generated is learned.

Uncertainty is not restricted to state estimations but can also present in dy-

namical interaction with the environment in which unforeseen and perceptual

uncertainties can arise such as in manipulation tasks. When solely tracking a

Cartesian trajectory position uncertainties (poor visual estimation of the tar-

get) can lead to the failure of the task or a dangerous accumulation of contact

forces. In Pastor et al. (2011) the authors learn, via imitation learning, an initial

Dynamic Movement Primitive (DMP) Cartesian policy and separately a target

a force profile. By using sensor feedback they modify the target trajectory such

to replicate the force profile thus achieving robustness to pose uncertainty. An-

other possibility is to vary the stiffness parameters of an impedance controller

Kronander and Billard (2012) based on the position uncertainty, if the posi-

tion uncertainty is high then the robot will be more compliant. In Medina et al.

(2013) the authors introduce a risk-sensitive control framework which depending

on the uncertainty will make a trade-off between the position and force errors

parameter gains of an impedance controller. The task (Cartesian position and

velocity) which is tracked by the controller is learned from demonstrations and

encoded in a model.

Much work has been undertaken in learning reactive-behaviour, history de-

pendent behaviour and combining multiple behaviour primitives to achieve com-

plex behaviour. However very few have studied the effect of uncertainty in the

decision process and do not consider it during the learning or assume that it

is implicitly handled. A noticeable exception is Lidoris (2011), in which a hu-

man expert guides the exploration of a robot in an indoor environment. The

high level actions (Explore, Loop Closure, Reach goal) taken by the human are

recorded along with three different features related to the uncertainty in the

map. Using SVM classification a model is learned which indicates which type

of action to take given a particular set of features. The difference with our ap-

proach is that we perform the learning in continuous action space at trajectory

level and multiple actions are possible given the same state, which cannot be

handled by a classifier.

3.3 Experiment: table search

In our search task setup, Figure 3.2 and Figure 3.3 (top left), a group of

15 human volunteers were asked to search for a wooden green block located at

52

1

4

2 3

Figure 3.2: Table search task. Blindfolded human subjects after a disorientation step are
placed in one of the four starting locations. The heading of the subject is
always kept the same. The human’s objective is to locate the green block on
the table. Throughout all experiments the green wooden block is kept in the
same location.

a fixed position on a bare table. Each participant repeated the experiment 10

times from each of 4 mean starting points with an associated small variance.

The starting positions were given with respect to the location of the human’s

hand (all participants where right handed). The humans were always facing the

table with their right arm stretched out in front of them. The position of their

hand was then either in front, to the left, to the right, or in contact with the

table itself.

As covered in the background section, previous work has taken a proba-

bilistic Bayesian approach to model the beliefs and intent of humans. A key

finding was that humans update their beliefs using Bayes rule (shown so far in

the discrete case). We make a similar assumption and represent the human’s

location belief (where he thinks he is) by a particle filter which is a point mass

representation of a probability density function. There is no way of knowing

the human’s belief with certainty. We make the critical assumption that the

belief is observable in the first time step of the search and all following beliefs

are assumed correct through applying Bayes integration. The belief is always

initialized to be uniformly distributed on top of the table, see Figure 3.3 (top

right), and the starting position of the human’s hand is always in this area.

Before each trial the participant was told that he/she would always be facing

the same direction with respect to the table (so always facing the goal, like in

the case of a door) but his/her translational starting position would vary. For

instance, the table might not be always directly in front of the person and

his/her distance to the edge or corner could be varied. In Figure 3.3 bottom left,

we illustrate four representative recorded searches whilst in the bottom right,

we illustrate a set of trajectories which all started from the same region. One

interesting aspect is the diversity present, demonstrating clearly that humans

53

−0.4

−0.2

0

0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

scale: meters [m]

Initial belief

−0.4
−0.2

0
0.2

−0.5

0

0.5

−0.2

0

0.2

0.4

Human multiple strategies

−0.4
−0.2

0
0.2

−0.5

0

0.5

−0.2

0

0.2

0.4

Human demonstrated searches

Table world environment

Figure 3.3: Top left : A participant is trying to locate the green wooden block on the table
given that both vision and hearing senses have been inhibited. The location
of his hand is being tracked by the OptiTrack R© system. Top right: Initial
distribution of the uncertainty or belief we assume the human has with respect
to his position. Bottom left: Set of recorded searches, the trajectories are with
respect to the hand. Bottom right: Trajectories starting from same area but
have different search patterns, the red trajectories all navigate to the goal via
the top right corner as opposed to the blue which go by the bottom left and
right corner. Among these two groups there are trajectories which seem to
minimize the distance taken to reach the goal as opposed to some which seek
to stay close to the edge and corners.

54

behave differently given the same situation.

It is non-trivial to have a robot learn the behaviour exhibited by humans

performing this task. As we cannot encapsulate the true complexity of hu-

man thinking, we model the human’s state through two variables, namely, the

human’s uncertainty about his current location and the human’s belief of his

position. The various strategies adopted by humans are modelled by building

a mapping from the state variables to actions, which are the motion of the hu-

man arm. Aside from the problem of correctly approximating the belief and

its evolution over time, the model needs to take into consideration that people

behave very differently given the same situation. As a result it is not just a

single strategy that will be transferred but rather a mixture of strategies.

3.4 Formulation

In the standard PbD formulation of this problem, a parametrised function

is learned, mapping from state xt, which denotes the current position of the

demonstrator’s hand, to the hand’s displacement ẋt. In our case since the envi-

ronment is partially observable we have a belief or probability density function,

p(xt|y0:t, ẋ0:t), which is conditioned on all sensing information, y0:t, (the sub-

script, 0 : t, indicates the time slice which ranges from, t = 0, to the current

time, t = t) over the state space at any given point in time and the history of

applied actions, a0:t. We seek to learn this mapping, f : p(xt|y0:t, ẋ0:t) 7→ ẋt+1,

from demonstrations. During each demonstration we record a set of variables

consisting of the following:

• ẋt ∈ R3, velocity of the hand in Cartesian space, which is normalised.

• x̂t = arg maxxt
p(xt|y0:t, ẋ0:t), the most likely position of the end-effector,

or believed position.

• U ∈ R, the level of uncertainty which is the entropy of the belief: H (p(xt|y0:t, ẋ0:t)).

A statistical controller was learned from the tuple dataset: {(ẋ, x̂, U)} recorded

during the search trials of the human subjects. Having described the experiment

we proceed to give an in-depth description of the mathematical representation

of the belief, sensing and motion models and the uncertainty.

Belief model

A human’s belief of his location in an environment can be multi-modal or

uni-modal, Gaussian or non-Gaussian and may change from one distribution to

another. We chose a particle filter to be able to represent such a wide range

of probability distributions. A particle filter is a Bayesian probabilistic method

which recursively integrates dynamics and sensing to estimate a posterior from

55

a prior probability density. The particle filter has two elements. The first esti-

mates a distribution over the possible next state given dynamics and the second

corrects it through integrating sensing. Given a motion model p(xt|xt−1, ẋt),

and a sensing model p(yt|xt), we recursively apply a prediction phase where we

incorporate motion to update the state, and an update phase where the sensing

data is used to compute the state’s posterior distribution. The two steps are

depicted below.

p(xt|y0:t−1, ẋ0:t) =

∫
p(xt|xt−1, ẋt) p(xt−1|y0:t−1, ẋ0:t−1) dxt−1 (3.4.1)

p(xt|y0:t, ẋ0:t) =
p(yt|xt)p(xt|y0:t−1, ẋ0:t)

p(yt|y0:t−1)
(3.4.2)

The probability distribution over the state p(xt|y0:t, ẋ0:t) is represented by

a set of weighted particles which represent hypothetical locations of the end-

effector and their density which is proportional to the likelihood. The particular

particle filter used was the Regularised Sequential Importance Sampling (Aru-

lampalam et al., 2002a, p.182). From previous literature Bake et al. (2011) it

has been shown that there is a similarity between Bayes update rule and the way

humans integrate information over time. Under this assumption we hypothesise

that if the initial belief of the human is known then the successive update steps

of the particle filter should correspond to a good approximation of the next

beliefs.

Sensing model

The sensing model tells us the likelihood, p(yt|xt), of a particular sensation

yt given a position xt ∈ R3. In a human’s case, the sensation of a curvature

indicates the likelihood of being near an edge or a corner. However the likeli-

hood cannot be modelled using the human’s sensing information. Direct access

to pressure, temperature and such salient information is not available. Real

sensory information needs to be matched against virtual sensation at each hy-

pothetical location xt of a particle. Additionally, for the transfer of behaviour

from human to robot to be successful, the robot should be able to perceive the

same information as the human, given the same situation. An approximation of

what a human or robot senses can be inferred, based on the end-effector’s dis-

tance to particular features in the environment. In our case four main features

are present, namely corners, edges, surfaces and an additional dummy feature

defining no contact, air. The choice of these features is prior knowledge given

to our system and not extracted through statistical analysis of recorded trajec-

tories. The sensing vector is yt = [pc, pe, ps, pa], where p refers to probability

and the subscript corresponds to the first letter of the feature it is associated

with. In Equation 3.4.3, the sensing function, h(xt, xc), returns the probability

56

Figure 3.4: Four different time frames of the evolution of the belief particle filter. Top left :
Initial belief distribution; a lot of uncertainty. Top right: First contact is made
with the table, the measurement likelihood restrains the samples to be on the
table’s surface. Bottom right: First contact is an edge. Bottom left: Gradual
localisation.

of sensing a corner, where xc ∈ R3 is the Cartesian position of the corner which

is the closest to xt.

pc = h(xt, xc;β) = exp
(
− (β · ‖xt − xc‖)2

)
(3.4.3)

The exponential form of the function, h, allows the range of the sensor to be

reduced. We set β > 0 such that any feature which is more than 1cm way from

the end effector or hand has a probability close to zero of being sensed. The

same sensing function is repeated for all feature types.

The sensing model takes into account the inherent uncertainty of the sensing

function 3.4.3, and gives the likelihood, p(yt|xt) of a position. Since the range

of sensing is extremely small and entries are probabilistic we assume no noise in

the sensor measurement. The likelihood of a hypothetical location, xt, is related

to Jensen-Shannon divergence (JSD), p(yt|xt) = 1−JSD(yt||ŷt) , between true

sensing vector, zt, obtained by the agent and that of the hypothetical sensation

ŷt generated at the location of a particle. In Figure 3.4, four different beliefs

are shown.

Motion model

The motion model is straight forward compared with the sensing model.

In the robot’s case the Jacobian gives the next Cartesian position given the

current joint angles and angular velocity of the robot’s joints. From this the

motion model is given by p(xt|xt−1, ẋt) = J(q)q̇ + ε where q is the angular

position of the robot’s joints, J(q) is the Jacobian and ε ∼ N (0, σ2I) is white

57

noise. The robot’s motion is very precise and its noise variance is very low. For

humans, the motion model is the velocity of the hand movement provided by

the tracking system. In our experiment we consider the noise from motion to

be negligible. An increase in uncertainty already results from the re-sampling

stage of Sampling Importance Resampling (SIR) particle filter and we found no

need to add additional motion noise. The particles’ positions were updated by

applying the measured velocity obtained from either the visual tracking system

(when recording the human demonstrations) or the robot’s forward kinematics.

Uncertainty

In a probability distribution framework, entropy is used to represent un-

certainty. It is the expectation of a random variable’s total amount of un-

predictability. The higher the entropy the more the uncertainty, likewise the

lower the entropy, the less the uncertainty. In our context, a set of weighted

samples {wi, xi}i=1...N replaces the true probability density function of the be-

lief, pθ(xt|y0:t, ẋ0:t). A reconstruction of the underlying probability density is

achieved by fitting a Gaussian Mixture Model (GMM), Equation 3.4.4, to the

particles,

pθ(xt|y0:t, ẋ0:t) =

K∑
k=1

w[k] g(xt ;µ[k],Σ[k]) (3.4.4)

where parameters θ = {w[k],µ[k],Σ[k]}1,...,K , are the weights, means and co-

variances of the individual multivariate Gaussian function, g(·) and K is the

number of Gaussian components. The scalar w[k] represents the weight associ-

ated to mixture component k (indicating the component’s overall contribution

to the distribution) and
∑K
k=1 w

[k] = 1. The parameters µ[k] ∈ R(3×1) and

Σ[k] ∈ R(3×3) are the mean and covariance of the normal distribution k.

The main difficulty here is determining the number of parameters of the

density function in a computationally efficient manner. We approach this prob-

lem by finding all the modes in the particle set via mean-shift hill climbing and

set these as the means of the Gaussian functions. Their covariances are deter-

mined by maximizing the likelihood of the density function via Expectation-

Maximization (EM).

Given the estimated density we can compute the upper bound of the differ-

ential entropy Huber et al. (2008), H,

H (pθ(xt|y0:t, ẋ0:t)) =

K∑
k=1

w[k]

(
− log(w[k]) +

1

2
log((2πe)D|Σk|)

)
(3.4.5)

where e is the base of the natural logarithm and D the dimension (being 3 in

our case).

The reason for using the upper bound is that the exact differential entropy

58

Figure 3.5: Representation of the estimated density function. Top Left and Right: Initial
starting point, all Gaussian functions are uniformly distributed with uniform
priors. The red cluster always has the highest likelihood which is taken to be the
believed location of the robot’s/human’s end-effector. Bottom Left: Contact
with the table has been established, the robot location differers from his belief.
Bottom Right: Contact has been made with a corner, the clusters reflect that
the robot could be at any corner (note that weights are not depicted, only
cluster assignment).

of a mixture of Gaussian functions has no analytical solution. When computing

both the upper and lower bounds it was found that the difference between the

two was insignificant, making any bound a good approximation of the true

entropy. The choice of the believed location of the robot/human end-effector is

taken to be the mean of the Gaussian function with the highest weighted π.

x̂t = arg max
xt

pθ(xt|z0:t) = µ(k=max(w)) (3.4.6)

Figure 3.5 depicts different configurations of the modes (clusters) and be-

lieved position of the end-effector (indicated by a yellow arrow).

3.5 Policies

3.5.1 Modelling human search strategies

During the experiments, the recorded trajectories show that different actions

are present for the same belief and uncertainty making the data multi-modal

(for a particular position and uncertainty different velocities are present). That

is multiple actions are possible given a specific belief. This results in a one-to-

many mapping which is not a valid function, eliminating any regression tech-

59

−0.2
0

0.2

−0.4

−0.2

0

0.2

0.4
−0.02

0.08

Gaussian Mixture Model (strategies)

−0.2
0

0.2

−0.4

−0.2

0

0.2

0.4
−0.02

0.08

Information Gain

Figure 3.6: Left: Resulting search GMM, a total of 67 Gaussian mixture components are
present. We note the many overlapping Gaussians: this results from the level of
uncertainty over the different choices taken. For example humans follow along
the edge of the table in different directions and might leave the edge once they
are confident with respect to their location. Right: Information Gain map of
the table environment, dark regions indicate high information gain as oppose
to lighter ones. Not surprisingly, the highest are the corners, followed by the
edges.

nique which directly learns a non-linear function. To accommodate this fact we

use a GMM to model the human’s demonstrated searches, {(x, ẋ, U)}. Using

statistical models to encode control policies in robotics is quite common, see

Billard et al. (2008).

By normalising the velocity the amount of information to be learned was

reduced. We also took into consideration that velocity is more specific to em-

bodiment capabilities: the robot might not be able to reproduce safely some of

the velocity profiles demonstrated.

The training data set comprised a total of 20’000 tuples (ẋ, x̂, U), from the

150 trajectories gathered from the demonstrators. The fitted GMM πθ(ẋ, x̂, U)

had a total of 7 dimensions, 3 for direction, 3 for position and 1 scalar for

uncertainty. The definition of the GMM is presented below in equation 3.5.1.

πθ(ẋ, x̂, U) =

K∑
k=1

w[k] g(ẋ, x̂, U ;µ[k],Σ[k]) (3.5.1)

µ[k] =

µẋµx̂
µU

Σ[k] =

Σẋẋ Σẋx̂ ΣẋU

Σx̂ẋ Σx̂x̂ Σx̂U

ΣUẋ ΣUx̂ ΣUU


Given this generative representation of the humans’ demonstrated searches we

proceeded to select the necessary parameters to correctly represent the data.

This step is know as model selection and we used Bayesian Information Criterion

(BIC) to evaluate each set of parameters which were optimised via Expectation-

Maximisation (EM).

A total of 83 Gaussian functions were used in the final model, 67 for trajec-

tories on the table and 15 for those in the air. In Figure 3.6 (left) we illustrate

the model learned from human demonstrations where we plot the 3 dimensional

slice (the position) of the 7 dimensional GMM to give a sense of the size of the

model.

60

3.5.2 Coastal Navigation

Coastal navigation Roy et al. (1999) is a path planning method in which the

objective function, Equation 3.5.2, is composed of two terms.

f(x0:T) =

T∑
t=0

λ1 · c(xt) + λ2 · I(xt) (3.5.2)

The first term, c(xt), is the traditional “cost to go” which penalizes every

step taken so as to ensure that the optimal path is the shortest. The value was

simply set to 1 for all discrete states in our case. The second term, I(xt), is

the information gain of a state. The information gain, I, of a particular state is

related to how much the entropy of a probability density function (pdf), being

the location’s uncertainty in our case, can be reduced. The two λ’s are scalars

which weigh the influence of each term.

In our table environment we discretised the state space, R3, into bins so

as to have a resolution of approximately, 1cm3, giving us a total of a 125’000

states. The action space was discretised to 6 actions, two for each dimension

meaning that all motion is parallel to the axis. For each state, xt, an I(xt) value

is computed by evaluating Equation 3.5.3,

I(xt) = Ep(yt|xt){H(pθ(xt|y0:t, ẋ0:t)} −H(pθ(xt|y0:t−1, ẋ0:t)) (3.5.3)

which is essentially the difference between the entropy of a prior pdf to that

of a posterior pdf. We set our initial pdf to be uniformly distributed and we

computed the maximum likelihood sensation for each discrete state xt which

is akin to the expected sensation or assuming that there is no uncertainty in

sensor measurement (an assumption often made throughout the literature to

avoid carrying out the integral of the expectation in Equation 3.5.3). The result

is the difference between the posterior pdf, given that the sensation occurred

in xt, and the prior pdf. The resulting cost map is illustrated in Figure 3.6.

As expected, corners have the highest information gain followed by edges and

surfaces. We do not show the values of the table since they provided much less

information gain.

The optimization of the objective function is accomplished by running the

Dijkstra’s algorithm. This algorithm, given a cost map, computes the shortest

path to a specific target from all the states. This results in a policy.

3.5.3 Control

The standard approach to control with a GMM is to condition on the state, x̂t

and Ut in our case, and perform inference on the resulting conditional GMM,

Equation 3.5.4, which is a distribution over velocities or directions.

61

πθ(ẋ|x̂, U) =

K∑
k=1

wkẋ|x̂,U g
(
ẋ ;µ

[k]
ẋ|x̂,U ,Σ

[k]
ẋ|x̂,U

)
(3.5.4)

The new distribution is of the dimension of the output variable, the velocity

(dimension 3). The variable ẋ in ẋ|x̂, U indicates the predictor variable and the

variables x̂, U have been conditioned. A common approach in statistical PbD

methods using GMMs is to take the expectation of the conditional (known as

Gaussian Mixture Regression), equation 3.5.5

ẋ = E{πθ(ẋ|x̂, U)} =

K∑
k=1

w
[k]
ẋ|x̂,U µ

[k]
ẋ|x̂,U (3.5.5)

The problem with this expectation approach, is that it averages out oppos-

ing directions or strategies and may leave a net velocity of zero. One possibility

would be to sample from the conditional, however this can lead to non-smooth

behaviour and flipping back and forth between modes resulting in no displace-

ment. To maintain consistency between the choices and avoid random switching

we perform a weighted expectation on the means so that directions (modes)

similar to the current direction of the end-effector receive a higher weight than

opposing directions. For every mixture component k, a weight αk is computed

based on the distance between the current direction and itself. If the current

direction agrees with the mode then the weight remains unchanged but if it is

in disagreement a lower weight is calculated according to the equation below.

αk(ẋ) = w
[k]
ẋ|x̂,U exp(− cos−1(< ẋ,µ

[k]
ẋ|x̂,U >)) (3.5.6)

Gaussian Mixture Regression is then performed with the normalised weights α

instead of π (the initial weight obtained when conditioning).

ẋ = Eα{πθ(ẋ|x̂, U)} =

K∑
k=1

αk(ẋ) µ
[k]
ẋ|x̂,u (3.5.7)

The final output of equation 3.5.7 gives the desired direction (ẋ is re-normalised).

In the case when the mode suddenly disappears (because of sudden change of

the level of uncertainty caused by the appearance or disappearance of a feature)

another present mode is selected at random. For example, when the robot has

reached a corner, the level of uncertainty for this feature drops to zero. A new

mode, and hence new direction of motion, will then be computed. However

this is not enough to be able to safely control the robot. One needs to control

the amplitude of the velocity and ensure compliant control of the end-effector

when in contact with the table. This behaviour is not learned here, as this is

specific to the embodiment of the robot and unrelated to the search strategy.

The amplitude of the velocity is computed by a proportional controller based

62

Speed
Proportional Controller

Impedance
Controller

Belief
(particle filter/GMM)

Policy
GMM/Discrete table

Environment

Physical robot

Virtual World

Search policy

Figure 3.7: Overview of the decision loop. At the top a strategy is chosen given an initial
belief p(x0|y0) of the location of the end-effector (initially through sampling the
conditional). A speed is applied to the given direction based on the believed
distance to the goal. This velocity is passed onwards to a low level impedance
controller which sends out the required torques. The resulting sensation, en-
coded through the Multinomial distribution over the environment features, and
actual displacement are sent back to update the belief.

on the believed distance to the goal,

ν = max(min(β1,Kp(xg − x̂), β2) (3.5.8)

where the β’s are lower and upper amplitude limits, xg is the position of the

goal, and Kp the proportional gain which was tuned through trials.

As mentioned previously, compliance is the other important aspect when

having the robot duplicate the search strategies. Collisions with the environment

occur as a result of the uncertainty. To avoid risks of breaking the table or the

robot sensors we have an impedance controller at the lowest level which outputs

appropriate joint torques τ . The overall control loop is depicted in Figure 3.7.

3.6 Results and discussion

Throughout our evaluation of our GMM PbD-POMDP control policy we

will be considering four search policies: Greedy, GMM, Hybrid and Coastal. We

evaluate behaviour present in the human demonstrations, and the four above

63

mentioned policies in terms of their riskiness. We qualitatively compare the

policies of the GMM model and the Coastal Navigation algorithm and highlight

the effect of uncertainty. We finish with a quantitative evaluation of search

efficiency in terms of distance travelled until the goal is found. The layout of

this section follows as:

• Section 3.6.1, we analyse the types of behaviour present in the human

demonstration as well as in four different search algorithms: Greedy,

GMM, Hybrid and Coastal.

• Section 3.6.2, we qualitatively analyse the GMM search policy (namely the

different modes/decisions present) with respect to the Coastal navigation

policy.

• Section 3.6.3, we evaluate the search performance, with respect to the dis-

tance taken to reach the goal and the uncertainty profiles towards the end

of the searches in 5 different experiments (different types of initializations).

3.6.1 Search & behaviour analysis

For each method (Greedy, GMM, Hybrid, Coastal) 70 searches were per-

formed with all starting positions drawn from the uniform distribution used

during the teaching stage (depicted in Figure 3.3 top right, page 54). In Fig-

ure 3.8 we illustrate the expected sensation E{y} and variance Var{y} for each

trajectory with respect to the edge and corner of the table.

The selection of edges and corners as features as a means of classifying the

type of behaviours present is not solely restricted to our search task. Salient

landmarks will result in a high level of information gain, which is the case for

the edge and corner (see Figure 3.6 right, page 60). Other tasks can use such

features or variants in which the curvature is considered for representing the

task space. These features are present in most settings and high level features

can use these easily as their building blocks.

We note that the Greedy search approach seeks to go directly to the goal

without taking into account the uncertainty. The GMM models human search

strategies. The Hybrid is a combination of both the Greedy and GMM method

where once the uncertainty has been sufficiently minimised, the policy switches

(threshold) to the Greedy method for the rest of the search. The Coastal naviga-

tion algorithm finds the optimal path to the goal based on an objective function

which consists of a trade-off between time taken to reach the goal and the min-

imisation of the uncertainty.

It can be seen that the human demonstrations have a much wider spread

than those of the search algorithms. We suggest that this is due to human

behaviours being optimal with respect to their own criteria as opposed to the

algorithms which usually tend to only maximise a single objective function. The

64

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Human trajectories (expected features)

Edge

C
or
ne

r

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Greedy−GMM trajectories (expected features)

Edge

C
or
ne

r

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
or
ne

r

Hybrid-Coastal trajectories (expected features)

Edge

Figure 3.8: Expected sensation. Plots of the expected sensation of the edge and corner
feature for all trajectories. The axes are associated with the sensor measure-
ments, 0 means that the corresponding feature is not sensed and 1 the feature
is fully sensed. A point in the plots summarises a whole trajectory by the mean
and variance of the probability of sensing a corner or edge. The radius of the
circles are proportional to the variance. The doted blue rectangle represents
the decision boundary for classifying a trajectory as being either risk-prone or
risk-averse. A point which lies inside the rectangle is risk-prone. Left: Human
trajectories demonstrate a wide variety of behaviours ranging from those re-
maining close to features to those preferring more risk. Right: Red points show
Greedy and blue points the GMM model. Bottom: Green circles are associ-
ated with the Hybrid method whilst orange are those of the Coastal navigation
method. The Hybrid method is a skewed version of the GMM which tends to-
wards risky behaviour and exhibits the same kind of behaviour as the Coastal
algorithm.

65

Criteria Greedy GMM Hybrid Coastal Human
risk-prone (f) 77 % 11 % 30 % 46 % 26 %
risk-prone (r) 78 % 12 % 24 % 45 % 7 %

Table 3.1: Percentage of risk-prone trajectories based on two decision criteria, the feature
(f) and the risk (r) (information gain) metrics discussed above.

trajectories of the Greedy and GMM methods represented by their expected fea-

tures demonstrate two distinctive behaviours (in terms of expected sensation),

risk-prone for the Greedy and risk-adverse for the GMM.

We make the assumption that Greedy trajectories are risk-prone by nature.

We performed a SVM classification on the Greedy-GMM expected features (Fig-

ure 3.8 right) and used the result to construct a decision boundary as a means of

classifying a trajectory as being either risk-prone or risk-averse. Table 3.1 first

row shows that the GMM and Human search trajectories are mostly risk-averse.

Surprisingly the Coastal policy seems to be very risk-prone given that it seeks

paths close to highly informative areas. We use a second metric based on the

information gain, which we call the Risk factor, to classify trajectories as being

either risk-prone or risk-averse.

The Risk factor of each individual trajectory is inversely proportional to

its accumulated information gain. Figure 3.9 (left) shows the kernel density

estimation distribution of the risk for each search method. Two trajectories per

search type corresponding to a supposed risk-prone and risk-averse search are

plotted in the expected feature space in Figure 3.9 (right). As expected, risk-

prone strategies for which the risk tends to 1 have a low expectation of sensing

edges and corners and produce trajectories with a low information gain while

those with a high expectation of sensing features have a high information gain.

Since the metric lies exclusively in the range [0,1] we define that every trajectory

which has a Risk factor lower than than 0.5 will be considered risk-averse whilst

those above are risk-prone. Table 3.1 second row illustrates the riskiness of each

search method. It is evident that humans are risk-averse in general followed by

GMM which is a smoothing of the human data, then Hybrid which as expected

should be more risk-prone since it is a linear interpolation between the GMM

and Greedy search policies and finally Coastal and Greedy.

Figure 3.10 (top left & right), shows risk-prone (red) and averse (green) tra-

jectories produced by human demonstrations and by the Greedy search. Both

these extremes correspond to our intuition that risk-averse trajectories tend to

remain closer to features or areas of high information gain as oppose to risk-prone

searches. However to stress the case that humans have multiple search strate-

gies present, we performed 40 GMM searches (model of the human behaviour)

which all started under the same initial conditions (same belief distribution,

true position and believed position). Figure 3.10 shows the resulting trajecto-

ries and expected features for each trajectory. It is clear that multiple searches

occur which is reflected in the plot of the expected features. All of the search

66

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−3

GMM
Hybrid

Human
Coastal

Greedy

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Edge

C
or
ne

r

risk averse

risk prone

Risk Prone & Averse

Edge

Figure 3.9: Risk of searches. Illustration of risk-prone and risk-averse searches in terms
of a Risk factor (left) and expected sensation (right). Left: Each trajectory
was reduced to a single scalar, which we call the Risk factor, quantifying the
risk of a trajectory. The Risk factor is inversely proportional to the sum of the
information gain of a particular trajectory. The colour paired dots (risk averse)
and squares (risk prone) represent trajectories which are plotted in Figure 3.10,
to illustrate that these correspond to risk averse and prone searches. Right:
Corresponding trajectories chosen in the Risk factor space but represented in
the feature space. As expected, trajectories with a high risk map to regions of
low expected feature. However the transition from the Risk space to feature
space is non-linear and will result in a different risk-level classification than the
feature metric previously discussed.

strategies generated by the GMM for this initial condition produced risk-averse

trajectories.

We conclude that there is a strong inclination towards inferring that indeed

multiple search strategies do arise in the human searches since they were ex-

tracted and encoded in the GMM model. From the risk distribution, humans

have a tendency to be risk-averse.

67

−0.4
−0.2

0
0.2

−0.5

0

0.5

−0.2

0

0.2

0.4

Human risk types

−0.4
−0.2

0
0.2

−0.5

0

0.5

−0.2

0

0.2

0.4

Greedy risk types

−0.4

−0.2

0

0.2 −0.5

0

0.5

−0.2

0

0.2

0.4

GMM risk types

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.05

0.1

0.15

0.2

0.25

Edge

C
or

ne
r

Expected feature of search #3 (GMM)

center
left-corner
right-corner

start
risk-prone
risk-averse

start
risk-prone
risk-averse

start
center

right-corner
left-corner

Figure 3.10: Risk prone & averse searches (red & green trajectories). Top left: Two human
trajectories taken from data shown in Figure 3.9. Top right: Two Greedy tra-
jectories. Bottom left: GMM trajectories, all starting from the same location,
the colour coding is to illustrate the different policies which were encoded and
emerge given the same initial conditions. Bottom right: Corresponding ex-
pected features of each trajectory, the colour coding matches the trajectories
to the “GMM risk types” sub-figure. All the searches which were generated by
the GMM for this initialisation produced risk-averse searches (based on the
feature metric discussed previous).

68

3.6.2 GMM & Coastal Navigation policy analysis

We next illustrate some of the modes (action choices) present during simu-

lation and evaluate their plausibility. Figure 3.11 shows that multiple decision

points have been correctly embedded in the GMM model. All arrows (red)

indicate directions that reduce the level of uncertainty.

Figure 3.12 depicts the vector fields of both Coastal and GMM models where,

as expected, the Coastal navigation trajectories tend to stay close to edges and

corners until they are sufficiently close to the goal. This is achieved by weighting

the information gain term I(xt) in the objective function sufficiently (λ2). If

λ2=0 the Coastal policy is the same Greedy algorithm.

It can be further seen that when the uncertainty tends towards it’s maximum

value (U → 1) all behaviour tends to go towards the edges and corners. As the

uncertainty reduces (U → 0) the vector field tends directly towards the goal.

However even at a low level of uncertainty, the behaviour at the edges and

corners remains multi-modal and tends to favour remaining close to the edges

and corners. This is an advantage of the GMM model. If the uncertainty has

been sufficiently reduced and the true position of the end-effector or hand is not

near an edge the policy dictates to go straight to the goal. This is not the case

for the Coastal algorithm which ignores the uncertainty and strives to remain

in the proximity of corners and edges until sufficiently close. This approach

could potentially lead to unnecessary travel cost which could otherwise have

been avoided.

69

Figure 3.11: Illustration of three different types of modes present during the execution of
the task where the robot is being controlled by the learned GMM model. The
white ball represents the actual position of the robot’s end-effector. The blue
ball represents the believed position of the robot’s end-effector and the robot
is acting according to it. The blue ball arrows represent modes. Colours en-
code the mode’s weights given by the priors πk after conditioning (but not
re-weighted as previously described). The spectrum ranges from red (high
weight) to blue (low weight). Top left: Three modes are present, but two
agree with each other. Top right: Three modes are again present indicating
appropriate ways to reduce the uncertainty. Lower left: Two modes are in
opposing directions. No flipping behaviour between modes occurs since pref-
erence is given to the modes pointing in the same direction as the robot’s
current trajectory. Lower right: GMM modes when conditioned on the state
represented in the lower left figure. The two modes represent the possible
directions (un-normalised).

70

−0.4−0.200.20.4

−0.2

−0.1

0

0.1

0.2

0.3
Costal navigation policy

−0.4−0.200.20.4

−0.2

−0.1

0

0.1

0.2

0.3
GMM policy U = 0.9

−0.4−0.200.20.4

−0.2

−0.1

0

0.1

0.2

0.3
GMM policy U = 0

−0.4−0.200.20.4

−0.2

−0.1

0

0.1

0.2

0.3
GMM policy U = 0.2

Figure 3.12: Illustration of the vector field for the Coastal and GMM policy. Top Left
Coastal policy, there is only one possible direction for every state at any time,
the values of λ2 in the cost function were set experimentally. Others: The
GMM policy for three different levels of uncertainty. For each point multiple
actions are possible which is reflected by the number of arrows (only the first
three most likely actions). As the uncertainty decreases the policy becomes
less multi-model, but remains around the edges and corners. Note that once
certain of being close to an edge there is a possibility to go either straight to
the goal or stay close to the edge and corners.

71

3.6.3 Distance efficiency & Uncertainty

We seek to distinguish the most efficient method in terms of two metrics,

the distance (in meters) taken to reach the goal and the level of uncertainty

upon arriving at the goal. We report results on 5 different search experiments

in which we compare the Greedy, GMM and Coastal Navigation algorithms.

The Hybrid was not fully considered since it is a heuristic combination of the

Greedy and GMM methods.

In the first experiment, the true and believed locations of the end-effector

were drawn uniformly from the original start distribution (Figure 3.3, top right)

reflecting the default setting. The initializations (both real and believed end-

effector locations) for the remaining 4 experiments were chosen in order to reflect

particular situations which highlight the differences and drawbacks between each

respective search method. For the first experiment (Uniform search experiment),

a 100 trials were carried out in which the end-effector position and belief were

initialized uniformly. As for the other 4 search experiments, 40 separate runs

were carried for each of the three algorithms.

Table 3.2 reports the mean and variance of the distance taken (in meters) to

reach the goal for each search method for all 5 experiments. We report on an

Analysis of Variance (ANOVA) to test that all experiments were significantly

different from one another as were the searches. We test the null hypothesis, Ho,

that there is no statistical difference between the 5 search experiments. Before

performing the ANOVA, we verified that our dependent variable, distance [m]

taken to reach the goal, follows a normal distribution for all methods and all

experiments (a total of 5 × 3 = 15 tests), an assumption which is required

by an ANOVA analysis. A Kolmogorov-Smirnov test was performed on each

experiment and associated search method. A total of 11/15 searches rejected

the null hypothesis with a significance level of less than 5% (p-value < 0.05).

In Table 3.3 we report the p-values and F-statistics for an ANOVA on the 5

different experiments where our null hypothesis is that all experiments produce

statistically the same type of search. For all experiment types the p-value is ex-

tremely small, below a significance value of 1% (p-value < 0.01) which indicates

that we can safely reject the null hypothesis and accept that all experiments

Experiment Greedy GMM Coastal
Uniform 1.54 (0.46) 0.99 (0.14) 1.13 (0.57)

#1 3.02 (0.36) 1.82 (0.23) 3.44 (1.50)
#2 0.80 (0.01) 1.41 (0.14) 0.94 (0.01)
#3 1.14 (0.08) 1.80 (0.17) 2.14 (0.81)
#4 0.75 (0.04) 1.34 (0.07) 0.68 (0.01)

Table 3.2: Mean distance and (variance) taken to reach the goal for 3 methods in 5 experi-
ments. The grey shaded entries correspond to the results of the search algorithm
which obtained the fastest time to reach the goal in each type of experimen-
t/search.

72

−0.2
0

0.2
0.4

0.6

−0.5

0

0.5

1
−0.2

0

0.2

0.4

Search experiment #1

true eof

GMM
Greedy

−0.2

0

0.2
−0.2

0

0.2

0

0.2

0.4

true eof

GMM
Greedy

Search experiment #2

−0.6
−0.4

−0.2
0

0.2 −0.2
0

0.2

−0.2

0

0.2

0.4

true eof

GMM
Greedy

Search experiment #3

−0.2

0

0.2

−0.2
0

0.2

0

0.2

0.4

Search experiment #4

true eof

GMM
Greedy

belief eof

Coastal

belief eof

Coastal

belief eof

CoastalCoastal

belief eof

Figure 3.13: Four search initializations, from top left to bottom right we refer to them as
#1-4. The circle indicates the true starting point of the end-effector (eof),
whilst the triangle is the initial believed location of the eof. The initialisation
in #1 was chosen such that the true and believed eof locations were at opposite
sides of the table. This setting was selected to highlight the draw back in
methods which do not take into account uncertainty. The second initialisation
#2, reflects the situation where once again there is a large distance between
true and believed location of the eof. However this time both are above the
table. The starting points in #3 are a variant on #1 with the difference being
that the believed eof position is above the table whilst the true eof location
is not. The last experiment #4 was a setup which would be favourable to
algorithms that are inclined to be greedy. Both true and believed eof locations
are close to one another.

73

search method Uniform #1 #2 #3 #4
p-value (F) 2e-06 (14) 5e-07 (19) 7e-11 (36) 4-06 (15) 4e-16 (67)

Table 3.3: ANOVA tests the null hypothesis that all search experiments produced the same
type of search with respect to the distance taken to reach the goal. All the
p-values are extremely small which indicate that the null hypothesis can safely
be rejected.

p-value (F) Greedy vs GMM Greedy vs Coastal GMM vs Coastal
Uniform 3.59e-08 (30) 3.32e-04 (13) 1.90e-01 (2)

#1 5.80e-08 (46) 1.88e-01 (2) 4.58e-06 (28)
#2 3.60e-08 (47) 4.68e-04 (14) 4.54e-06 (28)
#3 3.57e-07 (37) 2.07e-05 (23) 1.25e-01 (2)
#4 6.70e-10 (64) 1.58e-01 (2) 6.34e-13 (107)

Table 3.4: ANOVA between paired search methods. The first column gives an indication
of the probability that both the Greedy and GMM searches are statistically the
same (the null hypothesis). This was rejected with a tolerance of below %1.
In the second column, Greedy vs Coastal searches #1 and #4 are statistically
closer than the rest with a p-value threshold of 10% required to be able to reject
the null hypothesis. In the third column the uniform and #3 are not statistically
different and would require a higher threshold on the p-value to be so.

produced very different searches, which is important for a comparative study.

As the first ANOVA only indicated that the experiments produced different

searches, we also performed a second ANOVA test between the paired search

methods to confirm that the methods themselves are statistically different. Ta-

ble 3.4 illustrates the difference between the individual search methods for each

experiment. It was found that most search algorithms produced significantly

different searches (p-value < 0.01) with the exception of the GMM and Coastal

algorithm for the Uniform and #3 experiment (p-value < 0.1). However the

GMM and Coastal trajectories for the #3 experiment appear to be quite dif-

ferent when the trajectories are off the table’s surface, see Figure 3.13 (Bottom

left), but share similar characteristics such as edge following behaviour.

From our ANOVA analysis we conclude that the behaviour exhibited by the

three search strategies is significantly different. This is certainly the case for the

Greedy and GMM methods, even though in certain situations the Greedy and

Coastal policies display similar behaviour such as in experiment #1. The reason

for this is that both the Greedy and Coastal policies start in a situation where

there are no salient features available and their polices take the true end-effector

location to an even more feature deprived region. In this situation the GMM

policy is the clear winner with respect to the distance taken to reach the goal.

In experiment #2, both Greedy and Coastal policies perform equally well

and will usually perform faster than the GMM model if the true and believed

locations of the end-effector remain on the surface of the table. Otherwise if this

is not the case, they will both reduce the uncertainty in a very inefficient way

as the modes will often change during the search. This leads to the believed

position (most likely state, x̂t) varying greatly, resulting in an increased time

before the uncertainty has been narrowed down sufficiently for a contact to occur

74

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

distance to goal [m]

re
sc

al
ed

un
ce

rta
in

ty

Greedy
GMM

#2 Search

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

distance to goal [m]

re
sc

al
ed

un
ce

rta
in

ty

Greedy
GMM
Hybrid

Uniform initialisation

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

distance to goal [m]

re
sc

al
ed

un
ce

rta
in

ty

Greedy
GMM

#1 Search

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

distance to goal [m]

re
sc

al
ed

un
ce

rta
in

ty

Greedy
GMM

#4 Search

Coastal
Coastal

Coastal Coastal

Figure 3.14: Reduction of the uncertainty for the Uniform, #1, #2 and #4 experiment, the
expected value is reported Top left : Uniform initialisation, expected uncer-
tainty for the Greedy (red), GMM (blue), Hybrid (green) & Coastal (orange)
search strategies. Top right: Experiment #1. Bottom left: Experiment #2.
Bottom right: Experiment #4.

with the table (or simply by chance).

Figure 3.14 shows the normalised uncertainty with respect to the distance

remaining to the goal for all experiments, (#3 is excluded being similar to the

#2).

The results show which methods actively minimise the uncertainty and which

methods find the goal whilst being more dependent on chance. For all the

reported experiments the GMM (learned from human searches) reaches a lower

expected uncertainty than all other search algorithms. For the Uniform and #1

search experiment, all methods reach the same final uncertainty level. However,

for the #2 and #4 experiments, the GMM reaches the goal with significantly

lower uncertainty. It is inferred that the GMM model actively minimises the

uncertainty which is also reflected in the distance it takes reach the goal in

comparison with the other methods.

While the Greedy (#2) and Coastal (#4) are faster than the GMM method,

Table 3.2, both have a far higher level of uncertainty at the arrival which leads

to the assumption that chance has a non-negligible effect on their success.

3.7 Conclusions

75

In this work we have shown a novel approach in teaching a robot to act in

a partially observable environment. Through having human volunteers demon-

strate the task of finding an object on a table, we recorded both the inferred be-

lieved position of their hand and associated action (normalised velocity). A gen-

erative model mapping the believed end-effector position to actions was learned,

encapsulating this relationship. As speculated and observed, multiple strategies

are present given a specific belief. This can be interpreted as the fact that

humans act differently given the same situation.

The behaviour recorded from the human demonstrations, encoded as set of

expected sensations, showed the presence of trajectories which both remained

near to the edge and corner features but also trajectories which remained at

a distance. Risk-prone and risk-averse behaviour was further confirmed by the

overlap of the risk factor of Human and GMM generated trajectories with that

of the Greedy risk factor. According to the feature-based factor, more than 70%

of the human search trajectories were considered to be risk-averse whilst 93%

according to the Risk factor. Similarly the GMM search trajectories showed to

be 89-88% risk-averse.

In terms of the comparative study, the GMM controller is more adapted

to dealing with situations of high uncertainty and accounts for it better than

Greedy or Coastal planning approaches. This is evident in the experiment where

the believed position and true position of the end-effector were significantly far

apart and distant from salient areas. Future questions of scientific value to

be addressed are to which extent do humans follow the reasoning of a Markov

Decision Process in a partially observable situation where the state space is

continuous (the problem has been partially addressed in Bake et al. (2011) for

discrete states and actions).

A drawback of the PbD-POMDP approach is that the quality of the learned

policy is dependent on the abilities of the human teacher. If the teacher is good

(on average) then the transferred policy will be adequate, if however the human

is suboptimal at performing the task, then the resulting policy will be poor. An

autonomous way of evaluating the quality of the demonstrations whilst learning

a policy is necessary. In the next chapter, “Chapter 4”, we demonstrate that by

introducing a cost function and using a Reinforcement Learning approach we

can account for poor demonstrations and increase the quality of the policy.

76

Chapter 4

Peg in hole

In Chapter 3, we demonstrated that we could learn a search policy and success-

fully transfer it to a robot apprentice from demonstrations of human teachers for

a task consisting of locating a wooden object on a table. In these search tasks

our approach is based on the fact that intuition and knowledge exhibited by the

human teachers, during the search, gives a good balance between exploration

and exploitation actions which can then be encapsulated in a generative Gaus-

sian Mixture Model (GMM) and be subsequently used as a control policy. The

approach is satisfactory when extracting the many different behaviours demon-

strated by the human teachers and reproducing them. However for learning an

optimal or near optial policy with a unique behaviour the using of this approach

will not necessarily result in a efficient policy. For the GMM we model both

the good and the bad search strategies exhibited by the human teachers. If

the task is difficult and many possible solutions exist, such as in the previously

discussed blindfolded search task in Chapter 3, many demonstrations will be re-

quired for search patters to emerge and be encoded in the GMM. Otherwise the

GMM needs to be combined with another policy as previously shown (Hybrid

GMM-Greedy policy).

GMM does not discriminate between behaviours, as the Expectation-Maximisation

(EM) algorithm used to learn the GMM policy ignores the quality of the demon-

strated data. The EM algorithm does not contain a cost or reward function,

encoding the objective of the task, which is common practice in Planning and

Reinforcement Learning (RL). In the case of a difficult task where there are

mostly bad demonstrations, the GMM search policy will reproduce subopti-

mal behaviour. Additionally there may be that no good teachers, however by

combining different components from individual demonstrations a good search

strategy can be extracted.

To overcome the above mentioned limitations, we introduce a binary cost

function as a means of ranking the human teachers’ demonstrations. To this end,

we combine our PbD-POMDP approach with an Actor-Critic Reinforcement

Learning (RL) framework which is close to Fitted-Value Iteration(FVI) and

other Experience replay methods. This new method we refer to as RL-PbD-

POMDP. Our objective is to avoid the noisy explorative rollouts, a weakness

common to all RL approaches, and only rely on the data provided by the human

77

teachers. Autonomous exploration in RL can be seen to have three problem

areas.

Firstly it is time consuming and is typically only applicable where an exhaus-

tive exploration of the entire state or parameter space is feasible, such as in the

inverted pendulum or mountain cart type problems. The universal exploration

method, used throughout RL, is state independent (sometimes state dependent)

white noise which results in an entire exploration of the state space. This is nei-

ther practical nor feasible for the type of search problems we are considering.

Secondly in this search problem as we are using a physical robotic system the

exploration cannot be random as this would be dangerous. Finally it is im-

perative that both the PbD-POMDP and RL-PbD-POMDP receive the same

information. This would enable a fair comparison between the two algorithms

and support our hypothesis that the RL-PbD-POMDP provides an improved

policy with only human demonstrations as input.

We analyse our RL-PbD-POMDP approach on a power-socket Peg-in-Hole

(PiH) search task. In this task, human teachers must demonstrate to a robot

apprentice how to search for and connect a plug to a power socket, see Figure 4.1

(Left). The first part of the task, the search for the socket, is similar to the table

wooden-block setup in the previous chapter. However the connection of the plug

to the power socket, the PiH component, requires a higher level of precision. In

Figure 4.1 (Right) the robot reproduces the behaviour demonstrated by the

teacher.

Figure 4.1: Peg-in-hole (PiH) search task. Left: A teacher is wearing ear defenders (to
impede any hearing) and a blindfold. He first searches for the socket’s location
and then attempts to establish a connection. Force and torque information is
obtained from an ATI 6-axis force torque sensor at the end-effector of the tool
held by the teacher. Right: The KUKA LWR4 robot equipped with the same
force torque sensor and plug reproducing the teacher’s demonstrated behaviour.

4.1 Outline

• 4.2 Background

We review aspects of the literature related to the Peg-in-hole problem and

Actor-Critic Reinforcement Learning with an emphasis on Fitted methods

(also known as Batch or Experience replay), which we adapt to our GMM

policy.

78

• 4.3 Experiment methods

We detail the Peg-in-Hole search task, the number of participants (teach-

ers) which provide demonstrations, the type of data which is recorded and

the representation of the human’s location belief.

• 4.4 Learning Actor and Critic

We detail the representation of the Actor and the Critic and how they are

learned in a Fitted Policy Evaluation framework.

• 4.5 Control architecture

The learned behaviour is demonstrated on a 7 Degree of Freedom (DoF)

articulated robot, named KUKA LWR4. We detail the hybrid position-

force controller and dynamical field modulation heuristic which is used in

combination with the learned behaviour policy from the human teachers.

• 4.6 Results

We perform a set of 5 simulated experiments to test the generalisation, the

importance of data provided by the human teachers and the performance

against simple search approaches to find the location of the socket. We

further perform 3 experiments on the real robotic platform to test the

generalisation of the learned policy on different power sockets.

• 4.7 Conclusion

The RL-PbD-POMDP policy achieves an important improvement over

the previous PbD-POMDP approach by learning a value function over

the belief space using approximate dynamic programming (part of FVI)

and using it to update the parameters of our GMM policy. We evaluate

the ability of the policies to generalise to novel sockets and different socket

locations, both in simulation and on the KUKA LWR robot. The RL-PbD-

POMDP approach consistently proves to be better. More importantly

the RL-PbD-POMDP approach performs significantly better when it is

used on the worst teacher’s demonstrations, which mitigates the original

assumption that teachers have to be consistently efficient at the task.

4.2 Background

4.2.1 Peg-in-hole

The Peg-in-Hole (PiH) task is one of the most widespread step in industrial

assembly and manipulations processes, with examples including the assembly of

vehicular transmission components Chhatpar and Branicky (2001) and valves

Cheng and Chen (2014). To be successful, the estimated position of the robot’s

end-effector and workpiece must be precise. Typically, the clearance between

79

peg and plug is very small leaving little room for error. As a result, variations in

the assembly’s components in combination with position uncertainty can result

in either jamming during the insertion process or in failure for the plug finding

the hole. This created a need for adaptive search and insertion policies for PiH,

which has been driving research in this area.

From the literature, we identified the different components in PiH solutions.

All approaches use to some extent a vision system to estimate the position

of the workpiece. For instance in Meeussen et al. (2010) a PR2 is equipped

with a checkerboard to facilitate pose estimation of the plug with respect to a

power outlet whose position is extracted through a vision processing pipeline.

An initial connection is attempted by visual servoing which is successful 10% of

the time. Given an estimate of the workpiece’s position, a common approach

is to follow either a blind increasing spiral Cartesian trajectory or parametrised

policies which guarantee that all positions on the workpiece have been visited. In

Meeussen et al. (2010), if the PR2 initially fails to connect the plug to the socket

a spiralling outward motion is carried out with 2mm increments which obtains

an overall success rate of 95%. For this approach to be applicable to a generic

robot, it would require the addition of an external camera and checkerboard to

the robot in question which might be cumbersome. In our work we consider a

vision free system.

Another approach (which has been confined to academic circles) follows the

data driven Programming by Demonstration (PbD) framework. Teleoperated

or kinesthetic demonstrations by a human teacher are recorded and a policy is

learned and fine-tuned so as to reproduce the same (F)orce/(T)orque profile as

that demonstrated by the human teacher.

In Yang et al. (2014) the authors learn a PiH policy for the Cranfield bench-

mark object. A vision system obtains the pose parameters of the object whilst

a human teacher demonstrates trajectories, through teleoperation, in the frame

of reference of the object. A time-dependent policy represented with Dynamic

Movement Primitives (DMP) Schaal et al. (2004) encodes the recorded Cartesian

end-effector pose. In Nemec et al. (2013), a F/T profile is encoded separately by

a regressor parameterised by radial basis functions. Successive refinements of

the DMP policy are achieved through using force feedback to adapt the param-

eters of an admittance controller. This results in the policy having similar force

profiles to the human teachers. Further applications based on this method have

been performed Abu-Dakka et al. (2014) with the incorporation of a disturbance

rejection policy. Reproducing exactly the same force torque profile for the full

trajectory which is encoded in a time dependent dynamical system might be

unnecessary as the force torque profile is predominantly useful during the final

stage of the PiH task, where the insertion can cause jamming. The force torque

information can be used to rectify this problem (Kronander, 2015, Chap. 5). A

hybrid control paradigm Fisher and Mujtaba (1992) can also be used to control

the sensed force feedback with the environment. We make use of the hybrid con-

80

trol paradigm in this work in combination with a time-independent dynamical

system.

Reinforcement learning has also been used in combination with DMP to

learn PiH policies. In Kalakrishnan et al. (2011) an DMP policy is initialised

with kinesthetic demonstrations of opening a door and picking up a pen. The

recorded Cartesian trajectories are encoded in a parameterised DMP policy and

augmented with a F/T regressor profile. A reward function is designed, encoding

desirable properties of the F/T profile such as smoothness and continuity. After

110 trials the policy was found to be a 100% successful. In Gullapalli et al.

(1994) a 18 dimensional input (sensed position, previous position and force) and

a 6 dimensional output (linear and angular velocity) neural network is learned

by associative reinforcement learning. During the learning process the plug is

randomly positioned within the vicinity of the hole. After a 100 executions

and updates, the policy was shown to be successful and was able to generalise

across different geometries and clearances. Our work is similar in its approach,

however we will not be considering autonomous rollouts common in RL, but

will rely solely on the initial data provided by human teachers.

All the above policies were learned from human demonstrations and encoded

by a regressor function and optimised to reproduce a desired F/T profile. Other

approaches to the PiH problem are predominantly based on heuristic search

mechanisms and compliant controllers.

In Chhatpar and Branicky (2001) different blind search policies are analysed

for the insertion of a spline toothed hub into a forward clutch. The state space

is discretised into points so that the distance between two neighbours is smaller

than the clearance of the hole, which is known as a spray point coverage. Differ-

ent search strategies are evaluated which ensure that all the points are visited.

It is found that paths following concentric circles gradually spiralling inwards

are the most effective method for finding the hole. This concentric circle search

strategy has been applied in many PiH tasks. For instance in Bdiwi et al.

(2015), a PiH heuristic policy was developed to connect a 5-pin waterproof in-

dustrial charger to an electric socket. The authors estimated the pose of the

socket through a vision system and used a force controller in combination with

a blind spiral search policy to achieve a connection and demonstrated their ap-

proach to be reliable. These blind search strategies do not consider actual state

uncertainty and only work well when the plug or peg is within the vicinity of

the socket. In our work we consider no visual information which leads to high

state uncertainty making the direct application of such blind search methods

ill-suited.

In Park et al. (2013) the authors observe that humans lack the precision

and sensing accuracy of robotic systems, but nevertheless, are more proficient

than robots at PiH. The authors state that when humans try to connect a

square plug to a socket, they rub the plug against the socket’s outlet without

looking. It is thought that the inherent compliance in humans’ motor control

81

is the key to our success at PiH tasks kook Yun (2008). The authors introduce

an Intuitive Assembly Strategy (IAS) inspired by the above observation which

does not require the hole to be precisely localised. The IAS search strategy is

based on compliant spiral motion and the execution of the search trajectory is

performed with a hybrid force/position controller. We also have observed that

humans are good at accomplishing such tasks and we exploit this in our own

PiH policy. We further consider different types of geometric objects whilst only

considering haptic information.

The spiral strategy is widely used in industrial applications due to its sim-

plicity, however, it is a blind search method. Another approach when dealing

with the assembly process consists of fine-tuning parameters of predefined poli-

cies. In Cheng and Chen (2014) the authors develop an online Gaussian Process

policy optimisation of an assembly task. They demonstrate that by learning the

dynamical model of the task during execution, it is faster than offline methods,

such as Design of Experiment (DOE) or Genetic Algorithms.

4.2.2 Actor-Critic & Fitted Reinforcement Learning

In our PiH-search task, to learn a POMDP policy, we consider RL approaches

which naturally handle continuous belief-state and action spaces, such as pol-

icy search/gradient methods. Chapter 2 gives an overview of such policy search

methods. However, policy gradient methods are time consuming when the num-

ber of parameters is large compared with the state space, Zhao et al. (2015).

This results from the large variance of the policies’ gradient, making the stochas-

tic gradient ascent learning slow. In Chapter 3, the learned PbD-POMDP policy

has over 80 Gaussian functions, each of dimension 7, and we expect the number

of parameters of this RL policy to be of the same order. So instead we opt for

an Actor-critic (AC) approach which has been reported and proven Grondman

et al. (2012b) and with this approach the variance of the gradient update in AC

methods has a smaller variance compared with actor methods (policy gradient).

This results in a faster learning of the policy.

Actor-critic (Sutton and Barto, 1998a, Chap. 6.6) is an RL approach in

which the policy (actor) and critic (value function) have separate parameter-

ization and can be represented by different functions, for instance the value

function could be a decision tree and the policy a neural network. The advan-

tage of an AC is that the policy can be chosen such that it is computationally

efficient in evaluating actions and the value function does not necessarily have

to have the same input space as the policy.

The policy gradient theorem Sutton et al. (2000) states that if the regressor

functions of both the actor and critic share the same basis functions (also called

compatible features) and their parameters are linear, then an unbiased estimate

of the policies’ gradient can be obtained. The drawback of this approach is

82

that both the value function and policy have to be defined over the state-action

space. This is restrictive and in addition it has been shown that Function

Approximators (FA), such as linear models or neural networks, when combined

with temporal difference learning, can diverge Boyan and Moore (1995).

As we are working in belief-space we seek a framework in which both the

actor and critic can have their own parameterisation whilst guaranteeing con-

vergence of the value function. All value function approximators, such as tile

coding, state aggregation, k-nearest-neighbour, locally weighted averaging and

grid discretisation are all averagers and are guaranteed to converge in model

based RL Gordon (1995) when used with temporal difference learning. The key

idea presented in Gordon (1995) and which lead to the increase in popularity

of batch and fitted methods, is to separate the Bellman and value function in

a synchronous update, that is, to first compute the Bellman update for all the

sample states and then fit a value function via standard supervised learning

techniques. The extension to a model-free approach with a kernel function ap-

proximator (locally weighted averaging, the kernel is a Gaussian function) known

as Kernel-Based Approximate Dynamic Programming (KBDP) Ormoneit and

Glynn (2002) has proven to be globally optimal in a continuous-space frame-

work. This leads to the wider application of Batch RL methods such as Fitted

Value Iteration (FVI) Bou-Ammar et al. (2010) and Fitted Q-Iteration (FQI)

Ernst et al. (2005a) (Q-approximator is a random forest ensemble), Neumann

and Peters (2009a) to the RL community. By remembering all the state transi-

tion pairs and by applying multiple synchronous Dynamic Programming (DP)

and function approximation updates, the problem of diverging value function

approximators is resolved.

Retaining all the data makes it in practice easy to apply function approx-

imators which are not averagers, such as neural networks, to RL problems.

A successful example was Neural Fitted Q-Iteration (NFQI) Riedmiller (2005)

which uses a multi-layer perceptron to represent the Q-function for the cart-pole

and mountain car problems and shows rapid convergence to optimal policies. It

has since been used in many extensions, Peters and Schaal (2008b), Agostini and

Celaya (2010). This has lead to the application of more sophisticated regression

methods such the increasingly popular Deep Learning methods which are known

as Deep Fitted Q-iteration (DFQ) Lange and Riedmiller (2010) (used to learn

visual control policies) and with recent work including learning to play ATRI

and ping-pong games Mnih (2015), Hausknecht and Stone (2015) (reviewed in

Chapter 2).

The reader is referred to Busoniu et al. (2011) for a literature review which

includes a taxonomy of Batch RL methods and to (Wiering and van Otterio,

2012, Chap 2) for a concise description Batch RL beginning at its origins, how

it became popular with Fitted RL approaches and its continuation into Deep

Learning.

The RL-PbD-POMDP framework which we will use in this chapter is also

83

Socket A Socket B Socket C

80 cm

4
0

 c
m 7

cm

7cm

7
0

 c
m

120 cm

150 cm

5
0

 c
m

Figure 4.2: The experimental setup. Top-left: A participant (human teacher) is blindfolded
and placed within the orange rectangular area always facing the wall. Top-right:
Dimensions of the the wall and socket. Bottom: Three different power sockets,
only socket A and B are used for data collection, socket C is purely used for
evaluating the generalisation of the learned policy.

based on a Fitted approach, however we avoid performing the expensive max-

imisation over the continuous actions space, as in the FVI and FQI approaches,

by fitted policy evaluation followed by policy improvement. We use a Gaussian

Mixture Model to parameterise the policy and a Locally Weighted Regression

(LWR) as the value function approximator.

4.3 Experiment methods

Figure 4.2 (Top-left), illustrates the PiH-search experiment setup. The or-

ange area represents the teachers starting area and is assumed prior knowledge.

The sockets are always positioned at the center of a fake wall (wooden plank)

which is clamped to a table, see Figure 4.2 (Top-right) for an illustration.

We consider one type of plug, Type J1, and three different power sockets.

Power socket A, has a ring around its holes, socket B has a funnel, which we

hypothesize should make it easier to connect, and socket C has a flat elevated

surface. See Figure 4.2 (Bottom) for an illustration.

The human teacher holds the plug which is attached to a cylindrical handle

with an ATI 6 axis force torque sensor (Nano25 2) to provide raw wrench

φ ∈ R6 measurements. We define the actual measurement to be a function of

the raw wrench, ỹt = h(φt), which is a binary feature vector. The feature vector

1http://www.iec.ch/worldplugs/typeJ.htm
2http://www.ati-ia.com/products/ft/sensors.aspx

84

optitrack markers

Figure 4.3: Human holding the cylinder plug holder, which is equipped with OptiTrack
markers.

encodes whether a contact is present and the direction in which it occurs, which

is discretized to the four cardinalities.

On top of the cylinder there is a set of markers used by a motion capture

system OptiTrack3 (which has millimeter tracking accuracy), see Figure 4.3, to

measure both linear, ẋ ∈ R3, and angular velocity, ω ∈ R3, at each time step

which is recorded at a rate of 100 Hz. The force and torque information from

the ATI sensor is recorded at the same rate.

In this task, the human’s location belief is represented by a probability dis-

tribution function. The participants’ (teachers) initial belief is assumed to be

uniformly distributed as depicted in orange area of Figure 4.2 and that all sub-

sequent beliefs can be inferred from the measured velocity and measurements

provided by the ATI and OptiTrack sensors. The following section describes

how the belief can be represented, computed and compressed.

Belief state

For the task at hand, the belief probability density function, p(xt|y0:t, ẋ0:t), is

a Point Mass Filter (PMF) (Bergman and Bergman, 1999, p.87), which is a

Bayesian filter. It is parametrised by a set of grid cells containing valid proba-

bilities and is recursively updated by the application of a motion, p(xt|xt−1, ẋt)

and measurement, p(yt|xt) model. The motion model updates the position of

the probability density function and subsequently increases the uncertainty of

the position. The measurement model indicates areas of the state space from

which a measurement ỹt could have originated. In Figure 4.4 (Bottom-right) we

illustrate the likelihood when an edge is sensed.

A PMF is chosen to represent the believed location of the plug as the sensing

the sensing likelihoods are non-gaussian and lead to multi-modal distributions.

A PMF is able to capture such non-gaussianity whilst remaining fully determin-

istic (which is not the case for a particle filter).

The probability density function p(xt|y0:t, ẋ0:t) is high dimensional and thus

it is impractical to directly learn a statistical policy πθ : p(xt|y0:t, ẋ0:t) → ẋt

without some form of compression. One possibility would be E-PCA Roy and

Gordon (2003b) which extracts a set of representative basis functions which

3http://www.optitrack.com/

85

1 2

3 4

PMF

World Model Likelihood edge contact

Figure 4.4: Left: Point Mass Filter (PMF) update of a particular human demonstration.
(1) Initial uniform distribution spread over the starting region. Each grid cell
represents a hypothetical position of the plug. The orientation is assumed to
be known. (2) First contact, the distribution is spread across the surface of
the wall. The red trace is the trajectory history. (3) motion noise increases
the uncertainty. (4) The plug is in contact with a socket edge. Right : World
model: The plug is modelled by its three plug tips and the wall and sockets
are fitted with bounding boxes. Likelihood: The plug enters in contact with
the left edge of the socket. As a result, the value of the likelihood in all the
regions, xt, close the left edge take a value of one (red points) whilst the others
have a value zero (blue points) and areas around the socket’s central ring have
a value of one.

86

are aslo probability distributions. Although elegant this method requires a dis-

cretisation of the belief space which is computationally expensive. Instead we

choose to compress the pdf to a belief space vector composed of the maximum

a posteriori, x̂MAP
t = argmaxxt

p(xt|y0:t, ẋ0:t) ∈ R3, and the differentiation en-

tropy, U = H{p(xt|y0:t, ẋ0:t)} ∈ R. All pdfs in our recorded data set D are

transformed to a belief space feature vector, bt = [x̂MAP
t , U]T.

Each participant’s demonstration results in a datasetD = {ẋ[i]
1:T , ω

[i]
1:T , φ

[i]
1:T , b

[i]
1:T },

where the upper index [i] references the ith search trajectory (also one execution

of the task or one episode) and subscript 1 : T denotes the time steps during

the trajectory from initialisation t = 1 until the end t = T .

4.3.1 Participants and experiment protocol

To perform the PiH search tasks we recruited 10 student volunteers to be

teachers (all male Master’s and PhD students). The participants were aged

between 24 and 30 with an average age of 26 years and a standard deviation of

2.4 years. Each participant carried out 30 demonstrations of the PiH search-task

and each session lasted approximately 50 minutes and never exceeded one hour.

The 10 participants were divided equally in two groups, A and B. Each member

of group A began by performing 15 PiH searches with socket A, followed by a

10 minute break, finishing with an additional 15 searches with socket B. The

members of group B performed the same protocol starting with socket B and

ending with socket A. Figure 4.5 summarises a walk through of the experiment.

The only exclusion criteria was the inability of the subject to accomplish the

task. All participants gave written consent for taking part in this study.

The next section describes in detail the protocol for the search task:

1. Participant signs a form of consent before starting the experiment.

2. Each participant is given the opportunity to familiarise himself with the

environment and become comfortable in wearing the sensor deprivation

apparatus. During this time the participant is allowed to practice con-

necting the plug to the socket whilst standing within its vicinity.

3. Once the participant feels sufficiently ready to carry out the task to the

best of his ability, the experimenter proceeds to disorient him through the

usage of swivel chair. The disorientation process takes 30 seconds and

includes both translation and rotation motions. After disorientation, the

participant is signalled to stand up. The participant is reminded that he

is facing the direction of the wall and that his starting location is within

the orange rectangular area demarcated on the floor. He is then signalled

by a light touch to the shoulder that he can start the task.

4. At task completion, the subject is once again disoriented and the process

is repeated a total of 15 times. After 15 trials, the subject is given a 10

87

Group A

15 15

10 minutes break

Group B
~20 minutes

(switch sockets)

demonstrations

~20 minutes

AA

BA

AB

BB

Figure 4.5: Experiment protocol. The participants are divided in two groups of 5, Group
A begins with socket A and after a short break repeats the task with socket B.
The same logic holds for Group B. For each socket 15 executions of the task
are recorded.

minute break whilst the experimenter changes the type of socket (A or

B). A participant of group A will now continue with socket B. Similarly a

participant of group B will continue after the break with socket A.

Each participant carried out a total of 30 PiH-search experiments, giving a

total of 300 demonstrations.

Preliminary results

Both groups A and B took 9±10s to find the socket’s edge, regardless of the

socket type. This is to be expected since the sockets are at the same location.

It took a further 8±7s on average for group B to connect socket B and 12±10s

on average for group A to connect socket A. As we can see this is not a straight

forward task when considering the sensory deprivation. See Figure 4.6 (Bottom)

for the time taken to connect the plug to the socket. In Appendix A.1 we report

the results of a non-parametric statistical analysis on the time taken to connect

the sockets and we find that it takes 4 seconds more to connect socket A than

socket B. This is somewhat expected as socket B has a funnel which can help

to contain the subject to within the vicinity of the holes.

As connecting to socket A is more difficult we will using only these demon-

strations as training data to learn a policy. Both socket B and C will be used

solely to evaluate the generalisation of the policy.

4.4 Learning Actor and Critic

In our approach we learn two data driven policies. The first policy maps

from belief space to linear velocity πθ1 : bt 7→ ẋt and the second from angular

sensed wrench to angular velocity, πθ2 : φt 7→ ωt. We chose to learn the belief

policy πθ1 in a Actor-Critic RL framework and the wrench policy πθ2 directly

88

0 0.2 0.4 0.6

-0.6

-0.4

0

0.4

0.6

0

10

20

30

40

Figure 4.6: Top: Black points represent the starting position of the end-effector for all the
demonstrations. Four trajectories are illustrated. Bottom: Time taken for the
teachers to accomplish the PiH once the socket is localised. Group A and B
are depicted in red and blue. The second later indicates which socket is used,
see Figure 4.5.

89

from the demonstrated data as was done in (Kronander, 2015, Chap. 5), which

proved to be efficient in overcoming jamming during the PiH. A POMDP solver’s

objective is to find a policy (Actor), πθ1 : b 7→ u, which maximises the value

function (Critic) V πθ1 : b 7→ R for an initial belief, b0. The value function is the

expected reward over an infinite time horizon.

V πθ1 (bt) = E

{ ∞∑
t=0

γtrt+1|b0 = b, πθ1

}
(4.4.1)

In an Actor-Critic setting, the temporal difference error, δt ∈ R, of the value

function (the Critic) is used as a learning signal to update simultaneously itself

and the actor (the policy). In our method, two separate policies are learned, one

for the linear velocity and the other for the angular velocity. The orientation is

kept constant until the start of the connection of the plug to the socket. The

angular velocity policy used and learned only during the insertion of the plug

to the socket where it is necessary to control the orientation to avoid jamming.

4.4.1 Actor & Critic

Both the linear and angular velocity policies are parameterised by a Gaussian

Mixture Model (GMM), Equation 4.4.2.

πθ(ẋ, b) =

K∑
k=1

w[k] g(ẋ, b;µ[k],Σ[k]) (4.4.2)

The parameters θ = {w[k],µ[k],Σ[k]}1,...,K , are the weights, means and covari-

ances of the individual Gaussian functions, g(.),

µ[k] =

[
µ

[k]
ẋ

µ
[k]
b

]
, Σ[k] =

[
Σ

[k]
ẋẋ Σ

[k]
ẋb

Σ
[k]
bẋ Σ

[k]
bb

]

where
∑
k w

[k] = 1, µ
[k]
ẋ ∈ R3 and µ

[k]
b ∈ R4.

A generative model of the angular velocity and wrench πθ2(ω, θ) and a gen-

erative model of the linear velocity and belief state πθ1(ẋ, b) are learned. In

both cases we use the Bayesian Information Criterion to determine the number

of Gaussian functions. In the next section, we will show how the parameters of

πθ1 can be adapted by the value function of the Critic.

The Critic (the value function, Eq. 4.4.1) evaluates the performance of

the current policy. It is the expected future reward given the current belief

state and policy. In our method a reward of r = 0 is received at each time

step until the goal (plug-socket connection) is achieved, where a reward of 100

is given, rT = 100. Given the continuous nature and dimensionality of the

belief space we use Locally Weighted Regression Atkeson et al. (1997) (LWR)

as a function approximator of the value function, V π(b). LWR is a memory-

based non-parametric function approximator. It keeps a set of input-target

pairs {(b, r)} as parameters. When a value, b, is queried, a set of p neighbouring

90

points are chosen from the input space and are weighted according to a distance

metric. The predicted output is given by a weighted least square of the p points.

Equation 4.4.3 is the distance function used where D is a diagonal matrix.

Wi,i = exp

(
−1

2
(b− bi)TD−1 (b− bi)

)
(4.4.3)

A new value is queried according to Equation 4.4.4,

V π(b) = b (BTWB)−1BTWr (4.4.4)

where B = (b1, . . . , bp)
T ∈ R(D× p), W ∈ R(p× p) is a diagonal matrix, r =

(r1, · · · , rp)T ∈ R(p× 1)

4.4.2 Fitted policy evaluation and improvement

Policy evaluation

To learn the value function we make use of batch reinforcement learning

Ernst et al. (2005a), also known as Experience replay. This is an offline method

which applies multiple sweeps of the Bellman backup operator over a dataset

of tuples {(b[i]t , ẋ
[i]
t , r

[i]
t , b

[i]
t+1)}i=1,··· ,M until the Bellman residual, ||V πk+1(b) −

V πk (b)||, converges.

Algorithm 1: Fitted Policy Evaluation

input : ε, {(b[i]t , r[i], b
[i]
t+1)}i=1,··· ,M

output: V̂ πk (bt)

1 while ||V̂ πk+1(b)− V̂ πk (b)|| < ε do

2 V̂ πk+1(bt) = Regress(b, rt + γV̂ πk (bt+1))

Batch RL methods are used by a broad spectrum of research to learn policies.

Most of them have focused on learning the Q-value function directly (Fitted Q-

Iteration) Neumann and Peters (2009b); Ernst et al. (2005a); Riedmiller (2005).

Although this solves the control problem it requires discretisation of the action

space or assumes quantifiable actions, as the Q-Bellman backups, Q̂(bt, ẋt) ←
γmaxẋt+1

Q̂(ẋt+1, bt+1), require an optimisation over the action space, ẋt+1,

to find the best applicable action. Given the dimensionality and continuity of

our problem we opt for an on-policy evaluation method which requires multiple

policy evaluation and policy improvement iterations to achieve an optimal policy.

In order for the RL-PbD-POMDP and PbD-POMDP to be comparable we will

only be performing one iteration of policy evaluation and improvement, hence

Algorithm 1 is applied only once to the dataset.

91

Policy improvement

The Temporal Difference (TD) error δπt = rt+1 + γV π(bt+1)− V π(bt) given

by the critic is used to update the actor (Sutton and Barto, 1998b, Chap. 6).

In our offline approach the value function of the belief state, V̂ π(b), is estimated

until convergence and then used to update the actor. This offline batch method

has the advantage that no divergence can occur during the learning process.

We update the Actor policy given the Critic value function through a modi-

fication of the Maximisation step in Expectation-Maximisation (EM) for Gaus-

sian Mixture Models. We refer to this modification as Q-EM which is strongly

related to a Monte-Carlo EM-based policy search approach (Deisenroth et al.,

2011, p.50).

The reward of a demonstrated trajectory (one episode) is given by the dis-

counted return, Equation 4.4.5,

R(b[i], ẋ[i]) =

T[i]∑
t=0

γt r(b
[i]
t , ẋ

[i]
t) (4.4.5)

where the index i stands for the ith episode. All policy gradient approaches seek

to find a set of parameters, θ, of the Actor, which will maximise the expected

reward, equivalent to maximising Equation 4.4.6,

J(θ) = Epθ{R}

=

N∑
i=1

T [i]∏
t=0

πθ(ẋ
[i]
t , b

[i]
t)


︸ ︷︷ ︸

pθ(τi)

R(τi) (4.4.6)

where τi = {(ẋ0, b0), · · · , (ẋ[i]
T , b

[i]
T)} are the state-action samples of the ith

episode. To find the parameters which maximise the cost function, argmaxθ J(θ),

its derivative is set to zero. As this cannot be done directly, we maximise the

logarithmic lower bound of the cost function which results in Equation 4.4.7,

see Appendix A.2 for the derivation.

∇θQ(θ,θ′) =

N∑
i=1

T [i]∑
t=0

∇θ log πθ(ẋ
[i]
t , b

[i]
t)Qπθ′ (ẋ

[i]
t , b

[i]
t) (4.4.7)

Setting the derivative of Equation 4.4.7 to zero and solving for the parameters

θ = {w,µ,Σ} leads to a Maximisation update step of EM which is weighted by

Qπθ′ . We use the Critic’s TD error as a substitute for Qπ. Assuming that our

estimated value function, V̂ π, is close to the true value function V π, the TD

error δπ is an unbiased estimate of the advantage function, Equation 4.4.8 (see

Appendix A.4).

Aπ(ẋt, bt) = Qπ(ẋt, bt)− V π(bt) = δπt (4.4.8)

92

Using the advantage function as means of policy search is popular with methods

such as Natural Actor Critic (NAC) Peters and Schaal (2008a).

Each state-action sample j has an associated weight, δj ∈ R, where δj > 0

means that the jth state action-pair lead to an increase in the value function

and δj < 0 lead to a decrease in the value function. The data log-likelihood is

re-weighted accordingly, giving more importance to data points which lead to a

gain. Since the Q-EM update steps cannot allow negative weights, the TD error

is rescaled to be between 0 and 1.

The reader is referred to Appendix A.3 for the Maximisation update step of

Q-EM for a GMM parameterization of the policy.

2D example fitted policy evaluation and improvement

To illustrate the mechanism of fitted policy evaluation and improvement,

we give a 2D example of its application, see Figure 4.7. The Top-left subfigure

depicts 10 trajectories demonstrated by two teachers going from start (white

circle) to goal (orange star) state. The optimal path is a straight line passing

in between two obstacles. Neither teacher demonstrated the optimal straight

path.

In the Bottom-left, a GMM is fitted πθ(ẋ, x) to the teachers’ data, using the

standard EM-algorithm. Taking the policy to be the output of Gaussian Mix-

ture Regression (GMR) E{πθ(ẋ|b)} we obtain different behaviours than those

demonstrated by the human teachers. The GMR averages the different modes

encoded by the Gaussian functions which results in a mixing of the original

demonstrated behaviours. No trajectories of the GMR policy truly replicate the

demonstrated behaviour.

In the Top-right subfigure, we apply fitted policy evaluation to the original

demonstrated data (discount factor γ = 0.99 and reward r = 1 when the goal is

reached and zero otherwise) and compute the value function.

The Bottom-right subfigure illustrates the GMM policy learned with the

Q-EM algorithm. As the advantage function Aπ(x, ẋ) is highest along the start-

goal axis, data points following this gradient will have a higher weight. This

results in a policy with better rollouts (closer to the optimal path) than the

trajectories generated by the policy learned via standard EM.

Belief state fitted policy evaluation

Returning to the PiH-search task with socket A, the Fitted Policy Evaluation

(FPE) Algorithm 1 is applied to the demonstrations. In Figure 4.8 we illustrate

the value function of the most likely state after the FPE algorithm converges.

As expected, the value function is high closest to the socket and around the axis

z = 0 and y = 0. When policy improvement via Q-EM is applied the Gaussian

functions of the GMM will favour these locations.

In Figure 4.9 we illustrate the best and worst trajectories in terms of the

93

teacher 1

teacher 2

goal

start

1.0

0.5

Figure 4.7: Fitted policy evaluation & improvement example. Top-left: The goal of the
task is to reach the goal state. The first teacher (blue) demonstrates five tra-
jectories which contours the obstacle in front of the goal. The second teacher
(red) demonstrates 5 trajectories which initially deviate from the goal before
passing between the two obstacles. Bottom-left: The EM algorithm is used to
fit a GMM to the teachers’ original data. The marginal πθ(x) is plotted in
blue and trajectories generated by the policy E{πθ(ẋ|x)} in orange. Top-right
Policy Evaluation:. Value function after fitted policy evaluation terminated,
the reward function is binary, r = 1 at the goal and zero otherwise, and a
discount factor γ = 0.99 is used. Bottom-right Policy Improvement: the GMM
is learned with the Q-EM algorithm in which each data point’s weight propor-
tional to the advantage function.

94

0

0.3

-0.4

0

0.4

-0.2

0

0.2

0

0.3 -0.4

0

0.4-0.2

0

0.2

Figure 4.8: LWR value function approximate V̂ π(x̂) for the most likely state x̂. The red
plane is to help visualise where the value function is above and below the
axis z = 0. Only states with values above 0.25 are plotted. The red arrow
indicates the heading of the human teacher when performing the search task.
The discount factor was γ = 0.99 and the variance of the kernel variance of 1
[cm], which was set experimentally.

95

worst
best

Figure 4.9: Best and worst trajectories. The red demonstrated trajectories are the best in
terms of the amount of value function gain whilst the blue are the worst. The
red arrow indicates the teacher’s heading. The blue trajectories tend towards
the sides of the wall as the initial starting position is on the boarders of the
wall. The red trajectories are centred along the y-axis of socket and tend to
move in a straight line towards the wall whilst aligning themselves with the
axis z = 0.

accumulated value function. We can see that the five best trajectories (red)

tend to be aligned with the socket (star position in front of socket), whilst the

worst trajectories are towards the edges of the wall and tend to follow spiralling

movements.

We learned two policies, one solely from the original human demonstrations

which we call GMM and the second which is the result of one iteration of fitted

policy evaluation and improvement which we call Q-EM. In the section 4.6 we

compare the GMM and Q-EM policies with the improvements which can be

achieved within the RL-PbD-POMDP framework.

4.5 Control architecture

As detailed in section 4.4.2, a Gaussian Mixture Model was learned for both

linear and angular velocity, although only the linear control policy is active until

the plug is within the socket’s hole, as the orientation is constant. The direction

to search is given by the conditional, Equation 4.5.1,

πθ(ẋ|b) =

K∑
k=1

w
[k]
ẋ|b g(ẋ;µ

[k]
ẋ|b,Σ

[k]
ẋ|b) (4.5.1)

which is a distribution over the possible normalised velocities. The function

g(·) is a multivariate Gaussian function parameterised by mean µ
[k]
ẋ|b ∈ R(3×1)

and Covariance Σ
[k]
ẋ|b ∈ R(3×3). The subscript ẋ|b indicates that the parameters

are the result of the conditional. The reader is referred to Calinon et al. (2010),

96

Sung (2004) for a detailed derivation of the conditional of a GMM. The learned

model is multi-modal, as different search velocities are possible in the same be-

lief state. Figure 4.10 illustrates the multi-modal vector fields of the conditional,

Equation 4.5.1. In autonomous dynamical systems control, the velocity is ob-

tained from the expectation of the conditional, Equation 4.5.1. However, the

expectation which is a weighted linear combination of the modes, could result in

unobserved behaviour or no movement if the velocities cancel out. As a result

we use a modified version of the expectation operator which favours the current

direction, Equation 4.5.2 - 4.5.3.

α(ẋ) = w
[k]
ẋ|b · exp(− cos−1(< ẋ,µ

[k]
ẋ|b >)) (4.5.2)

ẋ = Eα{πθ(ẋ|b)} =

K∑
k=1

αk(ẋ) · µ[k]
ẋ|b (4.5.3)

When the applied velocity mode is no longer present another direction is

sampled. For example, when the robot enters in contact with a feature, greatly

reducing the uncertainty, the current mode changes and a new search direction

is computed. Figure 4.10 illustrates the policy vector field for GMM and Q-EM,

both learned from teachers demonstrations.

4.5.1 Robot Implementation

The GMM policy ẋ = Eα{πθ(ẋ|b)} outputs a linear velocity which is nor-

malised, ẋ ∈ R(3×1). The amplitude of the velocity is computed separately and

modulated according to sensed forces on the end-effector. This search task is

haptic and the end-effector of the robot is always in contact with the environ-

ment. To make the robot compliant with the environment we use an impedance

controller in combination with a hybrid position-force controller. A hybrid con-

troller targets a sensed force Fx, in the x-axis, of 3N. The y and z velocity

components of the direction vector are given by Equation 4.5.3. This is insuffi-

cient for the robot to reliably surmount the edges of the socket, hence the vector

field of the GMM is modulated in y and z-axis, Equation 4.5.4.

ẋ = Ry(c(Fz) · π/2) ·Rz(c(Fy) · π/2) · ẋ (4.5.4)

where Ry and Rz are (3× 3) rotation matrices around the y and z-axis, and

c(F) ∈ [−1, 1] is a truncated scaling function of the sensed force. When a force

Fz of 5N is sensed, a rotation of Ry(π/2) is applied to the original direction

resulting in the robot getting over the edge. The direction velocity is always

normalised up to this point. The amplitude of the velocity is a proportional

97

Figure 4.10: Q-EM and GMM policy vector fields. Top: The GMM policy is conditioned
on an entropy of −10 and −5.2. For the lowest entropy level, most of the
probability mass is close to the socket area since this level corresponds to
very little uncertainty; we are already localised. We can see that the policy
converges to the socket area regardless of the location of the believed state.
For an entropy of −5.2 we can see that the likelihood of the policy is present
across wall. The vector field directs the end-effector to go towards the left or
right edge of the wall. Bottom: The entropy is marginalised out, the yellow
vector field is of the Q-EM and orange of the GMM. The Q-EM vector field
tends to be closer to a sink and there is less variation.

98

controller based on the believed distance to the goal,

ν = max(min(β1,Kp(xg − x̂), β2) (4.5.5)

ẋ = νẋ

where the lower and upper amplitude limits are given by β1 and β2, xg is the

position of the goal, and Kp the proportional gain which was tuned through

trials.

The above procedure can control the general behaviour of the search but

is insufficient for a successful implementation on a robotic system such as the

7 Degree of Freedom q ∈ R7 KUKA LWR, which we illustrate in Figure 4.11.

The GMM policy ẋ = Eα{πθ1(ẋ|b)} outputs a linear velocity and the angular

velocity is computed from a reference orientation which is constant. When

the plug is to be connected to the socket, the angular velocity is the output

of samples drawn from the conditional ω ∼ πθ2(ω|φ). From both linear and

angular velocities a reference position xr ∈ R(3×1) and orientation Rr ∈ R(3×3)

are computed and used to define a linear and angular error xe = xr − x, ψe =

angleaxis(RTRr) by using the the current position x and orientation R. Given

the kinematic chain of the robot, the inverse of the Jacobian J(q) ∈ R6×7 is used

in an impedance control to transform the Cartesian error ce = [xe, ψe]
T ∈ R6×1

to torque commands τt ∈ R7, Equation 4.5.6,

τt = JT(qt) (−Kce −Dċe) + g(qt) (4.5.6)

where K,D ∈ R6×6 are diagonal stiffness and damping matrices whose values

were set experimentally and g(qt) compensates for gravity. Given an applied

torque there is a resulting joint velocity q̇t from which we can compute the

measured Cartesian end-effector velocity used in the motion model of the PMF.

Figure 4.12 illustrates the complete control flow.

99

Figure 4.11: The KUKA LWR is a 7 Degree Of Freedom (DoF) robot, we illustrate in red
each joint, which is controlled at a rate of 1kHz via an ethernet cable. The
KUKA API provides a command interface to the stiffness, damping, position
and torque variables of each joint.

Environment

Speed

Belief filter

belief compression

Hybrid force/position

Vector field modulation

Force Control

Impedance Controller

Figure 4.12: Control architecture. The PMF (belief) receives a measured velocity, ˙̃x, and a
sensor measurement ỹ and is updated via Bayes rule. The belief is compressed
and used by both the GMM policy and the proportional speed controller,
Equation 4.5.5.

100

4.6 Results

We evaluate the following three aspects of the policy learned in our Actor-

Critic framework:

1. Distance taken to accomplish the goal (connect plug to socket). We

compare the Q-EM policy with a GMM policy learned through standard

EM and a myopic Greedy policy. This highlights the difference between

complicated and simplistic search algorithms and gives an appreciation of

the problem’s difficulty.

2. Importance of data provided by human teachers. We evaluate whether

it is possible to learn an improved GMM policy from Greedy demonstra-

tions. This policy which we call Q-Greedy is used to test whether indeed

human demonstrations are necessary. We evaluate whether it is possible

to obtain a good policy from the two worst teachers’ demonstrations as

not all teachers are necessarily proficient at the task in question and we

want to test whether our methodology can be applied in these cases. We

evaluate if we are able to obtain an improved policy from the worst two

teachers.

3. Generalisation. We learn a policy to insert a plug into socket A which

is located at the center of a wooden wall. We test the generalisation of

the policy in finding a new socket location and whether the policy can

generalise to sockets B and C, which were not used during the training

phase.

We evaluate aspects 1) and 2) purely in simulation as finding the socket

requires much less precision than establishing a connection and the physics of

the interaction is simple. Aspect 3), the generalisation, is evaluated both in

simulation, up to the point of localising the socket’s edge, and on the KUKA

LWR robotic platform for the connection phase of the task. The main reason

for employing the robot is that the connection phase dynamics is complex and a

simulation would be unrealistic. For the robot evaluation we consider the search

starting already within the vicinity of the socket.

4.6.1 Distance taken to reach the socket’s edge

(Qualitative)

We consider three search experiments which we refer to as Experiment 1,

2 and 3, in order to evaluate the performance in terms of the distance travelled

to reach the socket for the three search policies: GMM, Q-EM and Greedy.

In these three experiments the task is considered accomplished when a search

policy finds the socket’s edge.

101

In Experiment 1, three starting locations are chosen: Center, Left and

Right. See Figure 4.13, Experiment 1, for an illustration of the initial condition.

This setup tests the effect of the starting positions. A total of 25 searches are

carried out for each of the search policies.

In Experiment 2, two Cases are chosen in which the believed state (most

likely state of the PMF) and the true position of the end-effector are relatively

far apart. The location of the beliefs are chosen to be symmetric, see the Figure

4.13, Experiment 2. A total of 25 searches are carried for each of the two cases.

In Experiment 3, Figure 4.13, Experiment 3, the initial true starting posi-

tions of the end-effector are taken from a regular grid covering the whole start

region, also used as the initial distribution for the human demonstrations. A

total of a 150 searches are carried out for each of the three policies. This exper-

iment compares the search policies with the human teachers’ demonstrations.

We evaluate the performance of the three experiments in terms of the tra-

jectories and their distribution in reaching the edge of the socket.

In Experiment 1, see Figure 4.13 Experiment 1, second row the results

show a clear difference between the trajectories generated by the GMM and Q-

EM policies. The orange GMM policy trajectories go straight towards the wall,

whilst the yellow Q-EM policy trajectories drop in height making them closer

to the socket. The same effect can be seen in Experiment 2 (second row). The

Q-EM trajectories follow a downward trend towards the location of the socket.

The gradient is less as the initial starting condition is lower than in Experiment

1.

In Experiment 2, see Figure 4.13, Experiment 2, second row, the trajec-

tories of the Greedy policy depend on the chosen believed location (most likely

state of the PMF). There is no variance in the Greedy’s trajectories until it

reaches the edge of the red square, where the branching occurs as the believed

location is disqualified. This happens as no sensation has been registered at the

point when the believed location reaches the wall. The true location is in fact

situated further away from the wall than the believed location.

In Experiment 3, see Figure 4.13 Experiment 3, second row, Human and

GMM show similar distributions of searched locations. They cover the upper

region of the wall and top corners, to some extent. These distributions are not

identical for two reasons. The first is that the learning of the GMM is a local

optimisation which is dependent on initialisation and number of parameters.

The second reason is that the synthesis of trajectories from the GMM is a

stochastic process.

For the Q-EM policy, the distribution of the searched locations is centred

around the origin of the z-axis. The uncertainty is predominantly located in

the x and y-axis. The Q-EM policy takes this uncertainty into consideration

by restraining the search to the y-axis regardless of the starting position. The

uncertainty is reduced when it is in the vicinity of the socket. The Greedy’s

policy search distribution is multi-modal and centred around the z-axis where

102

Figure 4.13: Three simulated search experiments. Experiment 1: Three start positions
are considered: Left, Center and Right in which the triangles depict true posi-
tion of the end-effector. The red cube illustrates the extent of the uncertainty.
In the second row of Experiment 1, we illustrate the trajectories of both the
GMM (orange) and Q-EM (yellow) policies. For each start condition a total
of 25 searches were performed for each search policy. Experiment 2: Two
cases are considered: Case 1 blue, the initial belief state (circle) is fixed facing
the left edge of the wall and the true location (diamond) is facing the socket.
Case 2 pink, the initial belief state (circle) is fixed to the right facing the edge
of the wall and the true location is the left edge of the wall. In the second
row, the trajectories are plotted for Case 1. Experiment 3: A 150 start
locations are deterministically generated from a grid in the start area. In the
second row, we plot the distribution of the areas visited by the true position
during the search.

103

Figure 4.14: First contact with the wall, during experiment 1. (a) Contact distribution
for initial condition “Center” . (b) Contact distribution for initial condition
was “Right”. The ellipses correspond to two standard deviations of a fitted
Gaussian function.

the modes are above and below the socket. This shows that the Greedy policy

acts according to the most likely state which changes from left to right of the

socket, because of motion noise, resulting in left-right movements and little

displacement. As a result the Greedy policy spends more time at these modes.

In Figure 4.14 (Top-left), we illustrate the distribution of the first contact

with the wall during Experiment 1 for the Center initial conditions. The dis-

tribution of the first contact of the Greedy method is uniform across the entire

y-axis of the wall. It does not take into account the variance of the uncertainty.

In contrast, the GMM policy remains centred with respect to the starting posi-

tion and the Q-EM is even closer to the socket and there is much less variance

in the location of the first contact.

4.6.2 Distance taken to reach the socket’s edge

(Quantitative)

In Figure 4.15 we illustrate the quantitative results of the distance taken to

reach the socket for all three experiments. In Experiment 1, for the Center

initial condition, the Q-EM policy travels far less than the other search policies.

Considering that the initial position of the search is 0.45 [m] away from the wall,

the Q-EM policy finds the socket very quickly once contact has been established

with the wall. For the Right and Left starting conditions both the GMM and

Q-EM policies travel less distance to reach the socket, with a smaller variance

when compared with the Greedy search policy.

In Experiment 2, Figure 4.15, the Q-EM search policy is the most efficient.

For Case 1 of Experiment 2, the initial most likely state is fixed to the left and

the true position is facing the socket. As the belief is chosen to be to the left,

upon contact with the wall the policy takes a left action since it is more likely

to result in a localisation. On average this results in an exploration of the upper

left area of the wall, which explains why Case 1 of Experiment 2 performs worse

than Experiment 1 for the Center initial condition. In Case 2 however, where

the true state is facing the left edge and the believed position is facing the right

edge, less distance is taken to find the socket than for Case 1, Figure 4.15 (b).

104

Case 1 Case 2

0.5

1.0

1.5

2.0

2.5

di
st
an

ce
[m

]

Experiment 2

GMM
Q-EM
Greedy

Center Left Right

0.5

1.0

1.5

2.0

2.5

di
st
an

ce
[m

]

Experiment 1
GMM
Q-EM
Greedy
Q-Greedy

Figure 4.15: Distance travelled until the socket’s edge is reached. a) Three groups cor-
respond to the initial conditions: Center, Left and Right depicted in Figure
4.13, top left. The Q-EM method is always better than the other methods, in
terms of distance. b) Results of the two initial conditions depicted in Figure
4.13, top middle, both the true position and most likely state are fixed. The
Q-EM method always improves on the GMM.

0

1

2

3

4

5

6

di
st

an
ce

[m
]

A B A* B*

Experiment 3

Greedy
Q-Greedy
GMM
Q-EM

Figure 4.16: Distance travelled until the socket’s edge is reached. Results corresponding
to Experiment 3, Figure 4.13, top right. Again the Q-EM method is better,
but at a less significant level.

This improvement over Case 1 is due to the true location of the end-effector

being closer to an informative feature and results in a much faster localisation.

From Experiment 3, Figure 4.16, it is clear that all three search policies

travel less to find the socket’s edge compared with the teachers’ demonstrations.

All search policies are better than the human teachers with the exception of

group B*, which is performing the task with socket A. The Q-EM policy remains

the best.

We have shown that under three different experimental settings the Q-EM

algorithm is predominantly the best in terms of distance taken to localise the

socket. The GMM policy learned solely from the data provided by the human

teachers also performs well in comparison to the human teachers and Greedy

policy. We made, however a critical assumption in order to be able to use our

(RL-)PbD-POMDP approach. This assumption is that a human teacher is

105

Figure 4.17: Demonstrations of teacher # 5. The teacher demonstrates a preference

proficient in accomplishing the task. If a teacher is not able to accomplish the

task in a repetitive and consistent way so that a search patter can be encoded

by the GMM, the learned policy will perform poorly. Next we evaluate the

validity of this assumption and the importance of the training data provided by

the human teachers.

4.6.3 Importance of data

We perform two tests to evaluate the importance of the teachers training data

for learning a search policy. Firstly we take the worst two teachers in terms of

distance taken to find the socket’s edge and learn a GMM and Q-EM policy

separately from their demonstrations. In this way we can evaluate whether it is

possible to learn a successful policy given a few bad demonstrations (15 training

trajectories for each policy). Our second evaluation consists of using a noisy

explorative Greedy policy as a teacher to gather demonstrations which can then

be used to learn a new policy, which we call Q-Greedy.

Figure 4.17 illustrates 6 trajectories of teacher # 5. The human teacher

preferred to localise himself at the top of the wall before either proceeding

to a corner or going directly towards the socket. Once localised, the teacher

would reposition himself in front of the socket and try to achieve an insertion.

This behaviour was not expected since by losing contact with the wall, the

human teacher no longer had sensory feedback necessary to maintain an accurate

position estimate.

Figure 4.18 illustrates the value function of the belief state learned from the

data of teacher # 5. The states with the highest values seem to create a path

going from the socket towards the right edge of the wall. We proceed as before

to learn a GMM policy from the raw data and a Q-EM policy in which the data

106

Figure 4.18: Value function learned from the 15 demonstrations of teacher #5. The value
of the most likely state is plotted.

points are weighted by the gradient of the value function. In Figure 4.19, we

illustrate the resulting Marginalised Gaussian Mixture parameters for both the

GMM and Q-EM policies and we plot 25 rollouts of each policy starting at the

Center initial condition used in Experiment 1. We note that the trajectories

of the GMM policy have much variance in contrast to the Q-EM policy, result-

ing from an excess of variance in the 15 original demonstrations given by the

teacher. Too much variance is not necessarily good, a random (uniform) policy

in terms of generated trajectories will have the most variance and is as expected

extremely inefficient in achieving a goal. Furthermore there is insufficient data

to encode a pattern for the GMM model. In contrast, the Q-EM finds a pattern

by combining multiple parts of the available data and as a result fewer data

points are necessary to achieve a good policy. This effect is clear in Figure

4.20, showing the performance of the GMM and Q-EM algorithms under the

same initial conditions as in Experiment 1. For all the conditions and for both

teachers #5 and #7 the Q-EM policy always does better than the GMM.

We also tested whether we could use the Greedy policy as a means of gath-

ering demonstrations in order to learn a value function and train a Q-Greedy

policy. We used the Q-Greedy algorithm in combination with random pertur-

bations applied to the Greedy velocity, to act as a simple exploration technique.

We performed a maximum of 150 searches, which terminated once the socket

was found and used these demonstrations to learn a value function and GMM

policy which we refer to as Q-Greedy. Figure 4.15 illustrates the statistical

results of the Q-Greedy policy for Experiment 1 and 3, showing that there is

no difference between two policies. Our exploration method is probably too

107

Figure 4.19: Marginalised Gaussian Mixture parameters of the GMM and Q-EM learned
from the demonstrations of teacher #5. The illustrated transparency of the
Gaussian functions is proportional to their weight. Left column: The Gaussian
functions of the Q-EM have shifted from the left corner to the right. This
is a result of the value function being higher in the top right corner region,
see Figure 4.18. Center column: The original data of the teacher went quite
far back which results in a Gaussian function given a direction which moves
away from the wall (green arrow), whilst in the case of the Q-EM parameters
this effect is reduced and moved closer towards the wall. We can also see
from the two plots of the Q-EM parameters that they then follow the paths
encoded by the value function. Right column: Rollouts of the policies learned
from teacher #5. We can see that trajectories from the GMM policy have not
really encoded a specific search patter, whilst the Q-EM policy gives many
more consistent trajectories which replicate to some extent the pattern of
making a jump (no contact with the wall) from the top right corner to the
socket’s edge.

108

Center Left Right

0.5

1.0

1.5

2.0

2.5

3.0

4.0

5.0

6.0

di
st

an
ce

[m
]

#5 #7 #5 #7 #5 #7

Experiment 4
GMM
Q-EM

Figure 4.20: Results of a GMM and Q-EM policy under the same test conditions as Exper-
iment 1. The Q-EM policy nearly always does much better than the GMM
policy.

simplistic to discover meaningful search patterns and we could probably devise

better search strategies which would result in a good policy. However we have

shown that human behaviour does already have a usable trade-off between ex-

ploration and exploitation which can be used to learn a new policy through our

RL-PbD-POMDP framework.

4.6.4 Generalisation

An important aspect of a policy or any machine learning methodology is to

be able to generalise. So far we have trained and evaluated our policy within

the same environment. To test whether our GMM policies can generalise to a

new setting we changed the location of the socket to the upper right corner of

the wall. The GMM was trained in the frame of reference of the socket and

when we translated the socket’s location it also translated the policy.

To evaluate the generalisation of our learned policy we use the same initial

conditions of Experiment 1 with an additional new configuration named Fixed,

in which both the true and believed location are fixed, blue triangle and circle.

Figure 4.21 illustrates the trajectories of the three search policies for the Fixed

initial condition. The Greedy policy moves in a straight line towards the top

right corner of the table. As the true position is to the right, it takes the

Greedy policy longer to find the wall in contrast to both the GMM and Q-EM

policies. From the statistical results shown in Figure 4.22 we can see that for

the Fixed and Right initial condition, which are similar, both GMM and Q-EM

are better. However, for the Center and Left initial condition this is no longer

the case. The Greedy method is better under this condition since the socket is

109

(a)

Figure 4.21: Evaluation of generalisation. The socket is located in at the top right corner of
the wall. We consider a Fixed starting location for both the true and believed
location of the end-effector. The red square depicts the extent of the initial
uncertainty, which is uniform. (b) Distance taken to reach the socket’s edge.
For the Fixed setup (see (a) for the initial condition), both the Q-EM and
GMM significantly outperform the Greedy. The other three conditions are
the same as for Experiment 1.

Fixed Center Left Right

0.5

1.0

1.5

2.0

2.5

di
st

an
ce

[m
]

Experiment 5
GMM
Q-EM
Greedy

(a)

Figure 4.22: Distance taken to reach the socket’s edge. For the Fixed setup (see Figure
4.21) for the initial condition), both the Q-EM and GMM significantly out-
perform the Greedy.

110

close to informative features (it is located close to the edges of the wall). Once

the end-effector has entered in contact with the wall the actions of the Greedy

policy always result in a decrease of uncertainty, which was not the case when

the socket was located in the center of wall. Thus in both the Fixed and Right

initial condition the Greedy method does worse because it takes longer to find

the wall.

The GMM based policies are still able to generalise under different socket

locations. In general, as the socket’s location is moved further from the original

frame of reference in which it was learned, the higher is the likelihood that the

search quality degrades. We chose the upper right corner since it is the furthest

point from the origin and the GMM and Q-EM policies were still able to find

the socket. We note that the policy will always be able to find the socket once

it has localised itself. This can be seen from the vector field of the GMM policy

when the uncertainty is low, see Figure 4.10 on page 98. In this case the policy

is a sink function with a single point attractor.

4.6.5 Distance taken to connect the plug to the

socket

In this section we evaluate the distance taken for the policies and humans to

establish a connection, after the socket has been found. We start measuring

the distance from the point that the plug enters in contact with the socket’s

edge until the plug is connected to the socket. All the following evaluations are

done on a KUKA LWR4 robot. The robot’s end-effector is equipped with a

plug holder on which is attached a force-torque sensor, the same holders used

during the demonstration of the human teachers. In this way both the teacher

and robot apprentice share the same sensory interface.

We chose to have the robot’s end-effector located to the right of the socket

and a belief spread uniformly along the z-axis. See Figure 4.24 for an illustration

of the initial starting condition. This initial configuration was used to evaluate

the search policies for the three different sockets, see Figure 4.2 on page 84 for

an illustration of the sockets. The same initial configuration for the evaluation

of the three sockets was kept in order to observe the generalisation properties of

the policies. As a reminder we used only the training data from demonstrations

acquired during the search with socket A. Socket B has a funnel which should

make it easier to connect whilst socket C should be more difficult as it has no

informative features on its surface.

For each of the sockets we performed 25 searches starting from the same

initial condition. In Figure 4.23 we plot the trajectories of each of the search

methods for socket A. The GMM reproduces some of the behaviour exhibited

by humans, such as first localising itself at the top of the socket before trying

to attempt to make a connection. The Q-EM algorithm exhibits less variation

than the GMM and tends to pass via the bottom of the socket to establish a

111

Figure 4.23: 25 search trajectories for each of the three search policies for socket A.

(a)

(b)

Figure 4.24: KUKA LWR4 equipped with a holder mounted with a ATI 6-axis force-torque
sensor. (a) The robot’s end-effector starts to the right of socket A. The second
row shows screen captures taken of ROS Rviz data visualiser in which we
see the Point Mass Filter (red particles) and a yellow arrow indicating the
direction given by the policy. In this particular run, the plug remained in
contact with the ring of the socket until the top was reached before making a
connection. (b) Same initial condition as in (a) but with socket C. The policy
leads the plug down to the bottom corner of the socket before going the center
of the top edge, localising itself, and then making a connection.

connection. The Greedy method in contrast is much more stochastic since it

does not take into consideration the variance of the uncertainty but tries instead

to directly establish a connection. All three search methods are vastly superior,

when compared to the human’s performance see Figure 4.25. In Figure 4.24

illustrates a typical rollout of the GMM search policy for both socket A and C.

Once a contact is made with the socket’s edge the policy tends to stay close to

informative features and tends to wander vertically up and down. Only when

the uncertainty has been reduced does the GMM policy try to go towards the

socket’s connector.

The GMM and Q-EM policies are able to generalise to both socket B and

C, as the geometric shape and connector interface of the two sockets are similar

to socket A. The local force modulation of the policy’s vector field, which is not

learned, allows the end-effector to surmount edges and obstacles whilst trying

112

Comp

0.5

1.0

1.5

2.0

2.5

di
st

an
ce

[m
]

Connection of socket A
Human
GMM
Q-EM
Greedy

Comp

0.5

1.0

1.5

2.0

2.5

di
st

an
ce

[m
]

Connection of socket B
Human
GMM
Q-EM
Greedy

Figure 4.25: Distance taken to connect plug to socket once the socket is localised. (a)
Socket A. The human Group A are the set of teachers who first started with
socket A. They had no previous training on another socket beforehand. Group
BA first gave demonstrations on Socket B before giving demonstrations on
Socket A. Group BA is better than Group AA at doing the task. This is most
likely a training effect. However all policy search methods are far better at
connecting the plug to the socket. (b) Socket B. Both Groups AB and BB
are similar in terms of the distance they took to insert the plug into the socket
and as was the case for (a), the search policies travel less to accomplish the
task.

socket A socket B socket C
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

di
st

an
ce

[m
]

Peg-socket connection
GMM
Q-EM
Greedy

Figure 4.26: Distance taken (measured from point of contact of plug with socket edge) to
connect the plug to the socket.

113

to maintain a constant contact force in the x-axis. This modulation makes it

possible for the plug to get on top of socket C.

Figure 4.26 illustrates the statistics of the distance taken to establish a con-

nection for all three sockets. The interesting point is that both the GMM and

Q-EM algorithms perform better than the Greedy approach for socket C. Socket

C has no informative features on its surface and as a result myopic policies such

as the Greedy policy will perform poorly. However for socket A and B, the

Greedy policy performs better as both of these sockets have edges around their

connector point allowing for easy localisation. It can also be seen that most

search methods perform better on socket B than A, since the funnel shape con-

nector helps in maintaining the plug within the vicinity of the socket’s holes.

The discrepancy between the humans performance and the search policies

can be attributed to many causes. One plausible reason is that the PMF prob-

ability density representation of the belief is more accurate than the human

teachers position belief. Also, the motion noise parameter was fixed to be pro-

portional to the velocity and the robot moves at gentle pace (∼ 1 cm/s) as

opposed to some of the human teachers. In actuality, humans are far less pre-

cise than the KUKA which has sub-millimetre accuracy.

4.7 Discussion & Conclusion

In this work we learned search policies from demonstrations provided by hu-

man teachers for a task which consisted of first localising a power socket (either

socket A, B or C) and then connecting it with a plug. Only haptic information

was available as the teachers were blindfolded. We made the assumption that

the position belief of the human teachers was initially uniformly distributed in

a fixed rectangular region of which they were informed and is considered prior

knowledge. All subsequent beliefs were then updated in a Bayesian recursion

using the measured velocity obtained from a vision tracking system, and wrench

acquired from a force torque sensor attached to the plug. The filtered probabil-

ity density function, represented by a Point Mass Filter, was then compressed

to the most likely state and entropy.

Two Gaussian Mixture Model policies were learned from the data recorded

during the human teachers’ demonstrations. The first policy, called Q-EM,

was learned in an Actor-Critic RL framework in which a value function was

learned over the belief space. This was then used to weight training datapoints

in the M-step update of Expectation-Maximisation (EM). The second policy,

called GMM, was learned using the standard EM algorithm, and considered all

training data points equally, following in the footsteps of our initial approach

Chambrier and Billard (2014). Both the Q-EM and GMM policies were trained

with data solely from the human demonstrations of the search with socket A.

Four different aspects of the learned policies have been evaluated. Firstly,

114

which of three policies, Q-EM, GMM and a Greedy policy, took the least distance

to find the socket. Across three different experiments it was shown that the Q-

EM algorithm always performs the best. It was clear that the Q-EM policy

was less random and more consistent than the GMM policy as it tried to enter

in contact with the wall at the same height as the socket thus increasing the

chances of finding the socket.

Secondly, the importance of the data provided by the human teachers was

tested. The data from the two worst teachers was used to train an individual

GMM and Q-EM policy for each of them. It was found that the performance

of the Q-EM was better than the GMM in terms of distance travelled to find

the socket. When qualitatively evaluating the trajectories of the GMM with

respect to the Q-EM for the worst teacher, it is clear that the Q-EM policy

managed to extract a search pattern, which was not the case for the GMM

policy. A Q-EM policy was also learned from the data provided by a Greedy

policy with explorative noise and no improvement was found. From these results

we conclude that the exploration and exploitation aspects of the trajectories

provided by the human teachers is necessary.

Thirdly, the two policies (GMM and Q-EM) were tested to see whether

they were able to generalise to a different socket location. Under a specific

condition, called Fixed, both policies were significantly better than the Greedy

policy. However for the Center and Left initial conditions the Greedy policy

performed better. When the Greedy policy enters in contact with the wall at an

early stage, it performs better than the GMM and Q-EM. The reason for this

is that the actions taken by the Greedy policy in this setting will always result

in a decrease of entropy when the location of the socket is close to a corner, as

opposed to being in the center of the wall.

Fourthly, all three policies were evaluted on the KUKA LWR robot and

all performed better than the human teachers. For socket A there is no clear

distinction between the Q-EM and Greedy policy. On socket B, which was

novel, the Greedy policy performed better than the statistical controllers, which

we hypothesize was a result of a funnel which would make it easier for a myopic

policy. For socket C, both the GMM and Q-EM policies performed better than

the Greedy, as socket C has no features on its surface, this being a disadvantage

for a myopic policy.

We conclude that by simply adding a binary reward function in combina-

tion with data provided by human demonstrations, using fitted reinforcement

learning, better policy can be learned without the need to perform expen-

sive exploration-exploitation rollouts traditionally associated with reinforcement

learning and designing complicated reward functions. This is especially advan-

tageous when only a few demonstrations are available.

115

116

Chapter 5

Non-parametric Bayesian
State Space Estimator

In both Chapters 3 and 4, we demonstrated that it is feasible to learn a POMDP

policy from human teachers. Further, by adding a simple binary reward function

we were able to take into consideration the quality of these demonstrations

provided by the teachers. With this, we showed that our Reinforcement Learning

extension, RL-PbD-POMDP was able to yield improved policies even when

provided with a limited number of demonstrations taken from the worst teachers.

Both tasks from the previous two chapters (search for wooden block on a ta-

ble and peg-in-hole) fall into the category of goal oriented active-localisation.

In general, the localisation problem consists of estimating position parameters

given noisy observations whereas active-localisation refers to a policy which ac-

tively takes actions to acquire information to decrease the uncertainty of the

position estimate. In localisation, the model of the world also known as the

map is considered prior knowledge. This assumption constrains localisation

to an environment in which schematics exist and can be used as the world model

such as in the case of offices and buildings. If the map is not known a priori,

then Simultaneous Localisation And Mapping (SLAM) algorithms have to be

used instead of localisation. Typically, the map consists of a set of features also

known as landmarks which can be identified by sensors, and SLAM algorithms

maintain a filtered joint probability distribution over both the agent’s and fea-

tures’ position which is updated in accordance with a generic Bayesian State

Space Filter (BSSF) (see Figure 2.5 on page 22).

In this Chapter, we consider an agent tasked with searching for a set of

objects on a Table world (see Figure 5.1), in which exteroceptive feedback is

extremely limited. The agent can only sense an object after making physical

contact with it (bumping into it). The agent’s uncertainty of its location and

that of the object are encoded by probability distributions P (·), which at ini-

tialisation are known as the agent’s prior beliefs.

Figure 5.1 illustrates a particular instance of the agent’s beliefs. The agent

is currently located in the bottom table and has only a limited knowledge of its

location, somewhere near the right edge of the table.

As the agent explores the world, it integrates all sensing information at each

time step and updates its prior beliefs to posteriors (the result of the prior belief

117

Agents position

Object(1) position

Object(2) position

range of Agents
perception

Figure 5.1: Table Environment Table World (delimited by the black rectangle), viewed
from above, and the agent’s beliefs. There are three different probability density
functions present on the table. The blue represents the believed location of the
agent, the red and green probability distributions are associated with object
1 and 2. The white shapes in each figure represent the true location of each
associated object or agent.

after integrating motion and sensory information). All current SLAM methods

are limited in that they consider only uncertainty induced by sensing inaccu-

racy inherent in the sensor and motion models. In our setting as the sensory

information is strictly haptic, we can confidently assume no measurement noise.

In the search task illustrated in Figure 5.1, the beliefs and sparse measurement

information available to the agent are the source of the uncertainty which is,

the absence of positive object measurements. This is known as negative in-

formation (Thrun et al., 2005b, p.313) Thrun (2002); Hoffman et al. (2005).

Thus SLAM methodologies which use the Gaussian error between the pre-

dicted and estimated position of features, such as in the case of EKF-SLAM

and Graph-SLAM, will not perform well in this setting.

The EKF SLAM algorithm, [...], can only process positive sightings of land-

marks. It cannot process negative information that arises from the absence of

landmarks. -Probabilistic Robotics (Thrun et al., 2005b, p.313)-

In addition to the negative sensing information, the original beliefs depicted

in Figure 5.1 are non-Gaussian and multi-modal. We make no assumption

regarding the form of the beliefs. This implies that the joint distribution can

no longer be parameterised by a Multivariate Gaussian. This is an assumption

made in many SLAM algorithms, notably EKF-SLAM, and allows for a closed

form solution to the state estimation problem. Without the Gaussian assump-

tion no closed form solution to the filtering problem is feasible. Using standard

non-parametric methods (Kernel Density, Gaussian Process, Histogram,...) to

represent or estimate the joint distribution becomes unrealistic after a few di-

118

• Non-Gaussian joint distribution, no assumptions are made with re-
spect to its form.

• Mostly negative information available (absence of positive sightings of
the landmarks).

• Joint distribution volume grows exponentially with respect to the
number of objects and states.

• Joint distribution volume is dense, there is high uncertainty.

Attributes & Assumptions

Figure 5.2: Assumptions and attributes which have to be fulfilled by our Bayesian State
Space Filter.

mensions or additional map features. FastSLAM could be a potential candidate,

however as it parameterises the position uncertainty of the agent by a particle

filter and each particle has its own copy of the map, the memory demands be-

come quickly significant. For planning purposes we would also want to have

a single representation of the marginals. Figure 5.2 summarises the desirable

attributes and assumptions for our filter.

The main contribution of our work and the importance to the field of Artifi-

cial Intelligence

An accurate estimate of the agent’s belief space is a necessary precondition

before planning or reasoning can be carried out. In a wide range of Artificial In-

telligence (AI) applications the agent’s beliefs are discrete. This non-parametric

representation is the most unconstraining but comes at a cost. The parameteri-

sation of the belief’s joint distribution grows at the rate of a double exponential.

We propose a Bayesian state estimator which delivers the same filtered beliefs

as a traditional filter but without explicitly parametrising the joint distribution.

Through the memorising of the measurement likelihood functions having been

applied on the joint distribution and by taking advantage of their structure, we

achieve a filter which grows linearly as opposed to exponentially in both time

and space complexity. We refer to our novel filter as the Measurement Like-

lihood Memory Filter (MLMF). It keeps track of the history of measurement

likelihood functions, referred to as the memory, which have been applied on the

joint distribution. The MLMF filter efficiently processes negative information.

To the author’s knowledge there has been little research on the integration of

negative information in a SLAM setting. Previous work considered the case of

active localisation Hoffmann et al. (2006). The incorporation of negative in-

formation is useful in many contexts and in particular in Bayesian Theory of

Mind, Bake et al. (2011), where the reasoning process of a human is inferred

from a Bayesian Network and in our own work de Chambrier and Billard (2013)

where we model the search behaviour of a intentionally blinded human. In such

119

a setting much negative information is present and an efficient belief filter is

required. Our MLMF is thus applicable to the SLAM & AI community in gen-

eral and to the cognitive community which models human or agent behaviours

through the usage of Bayesian state estimators.

By using this new representation we implement a set of passive search tra-

jectories through the state space and demonstrate, for a discretised state space,

that our novel filter is optimal with respect to the Bayesian criteria (the suc-

cessive filtered posteriors are exact and not an approximation with respect to

Bayes rule). We provide an analysis of the space and time complexity of our

algorithm and prove that it is always more efficient even when considering worst

case scenarios. Lastly we consider an Active-SLAM setting and evaluate how

constraining the size of the number of memorised likelihood functions impacts

the decision making process of a greedy one-step look-ahead planner.

5.1 Outline

The remaining part of this Chapter is structured as follows:

• 5.2 Background: Review of three prominent SLAM algorithms and their

assumptions and an overview of active-localisation and exploration meth-

ods used with SLAM.

• 5.3 Bayesian State Space Estimation: Introduction to EKF-SLAM and its

unsuitability when mostly negative information is available. Description

of the Histogram-SLAM algorithm and the assumptions which can be ex-

ploited.

• 5.4 Measurement Likelihood Memory Filter: Mathematical derivation of

the MLMF, time and space complexity evaluation and extension to the

scalable-MLMF.

• 5.5 Evaluation: We numerically evaluate the time complexity of the scalable-

MLMF and verify its assumptions. We investigate the filter’s sensitivity

with respect to its parameters in an Active-SLAM setting.

• 5.6 Conclusion

5.2 Background

5.2.1 SLAM

Estimating the location or state parameters of a mobile agent whilst simul-

taneously building a map of the environment has been regarded as one of the

120

most important problems to be solved for agents to achieve true autonomy. It is

a necessary precondition for any agent to have an estimation of the world at its

disposal which accurately encompasses all knowledge and related uncertainties.

There has been much research surrounding the field of Simultaneous Localisa-

tion And Mapping (SLAM) which branches out into a wide variety of sub-fields

dealing with problems from building accurate noise models of the agent sensors

Plagemann et al. (2007), to determining which environmental feature caused

a particular measurement, also known as the data association problem Monte-

merlo and Thrun (2003) and many more.

Although the amount of research might seem overwhelming at first view, all

current SLAM methodologies are founded on a single principle; the uncertainty

of the map is correlated through the agent’s measurements. When an agent

localises itself (by reducing position uncertainty) all previously landmarks have

their uncertainty reduced since the uncertainty is correlated with that of the

agent’s uncertainty.

There are three main paradigms to solving the SLAM problem. The first

is EKF-SLAM (Extendend-Kalman Filter) Durrant-Whyte and Bailey (2006).

EKF-SLAM models the full state, being the agent’s parameters and environ-

mental features, by a Multivariate Gaussian distribution. The uncertainty of

each individual feature is parametrised by a mean (expected position of the

feature) and covariance (the level of uncertainty of the position of the feature).

The second approach is Graph-SLAM Grisetti et al. (2010). Graph-SLAM

estimates the full path of the agent and considers every measurement to be a

constraint on the agent’s path. It is parameterised by the canonical Multivariate

Gaussian. At each time step a new row and column is added to the precision

matrix which encodes landmarks which have been observed as constraints on

the robot’s position. At predetermined times, a nonlinear sparse optimisation

is solved to minimise all the accumulated constraints on the robot’s path.

The third method is FastSLAM Montemerlo et al. (2003). FastSLAM ex-

ploits the fact that if we know the agent’s position with certainty all landmarks

become independent. It models the distribution of the agent’s position by a

particle filter. Each particle has its own copy of the map and updates all land-

marks independently which is the strength of this method. However, if many

particles are required each must have its own copy of the map. It is beyond the

scope of this chapter to provide a detailed review of these three paradigms and

the reader is referred to Thrun et al. (2005b), Thrun and Leonard (2008).

5.2.2 Active-SLAM & Exploration

Active-SLAM refers to a decision theoretic process of choosing control ac-

tions so as to actively increase the convergence of the map. It is used in conjunc-

tion with exploration of an unknown environment in a SLAM setting. The two

121

steps of this process are: (i) generate a set of candidate destination positions,

(ii) evaluate these positions based on a utility function. The utility is a trade

off between reducing the uncertainty of the map or reducing the uncertainty of

the agent’s position.

Most approaches use a two-level representation of the map in an exploration

setting. At the lower level there is the chosen (landmark-based) SLAM filter and

at the higher level a coarser representation of the world. Such representations

can be occupancy grids Thrun and Bü (1996) which encode either occupied and

free space or a topological representation Kollar and Roy (2008).

Early and current approaches to selecting candidate exploratory locations

are based on evaluating Next-best-view González-Baños and Latombe (2002)

locations. Next-best-view points are sampled around free edges which are at

the horizon of the known map (frontier regions). In such a setting only target

points are generated, not the full trajectory. Probabilistic Road Map (PRM)

Kavraki et al. (1996) based methods have been used as planners to reach desired

target locations, such as in Huang and Gupta (2008), where a Rapidly Exploring

Random Trees (RRT) is combined with FastSLAM. In Valencia et al. (2012),

paths to frontier regions are computed via PRM on a occupancy grid map and

at the lower level they use Pose-SLAM (synonym for Graph-SLAM).

An alternative approach taken to generating candidate locations is the spec-

ification of high level macro actions, they being either exploratory or revisiting

actions as is the case in Stachniss et al. (2005). Macro actions reduce the costly

evaluation of actions, especially in the case of FastSLAM, which requires prop-

agating the filter forward in time so as to infer the information gain of each

action.

The last approach is to solve the planning problem through formulating it

as Partially Observable Markov Decision Process (POMDP) Ross et al. (2008).

However all methods take an approximation of the POMDP and consider a one

time step planning horizon (Lidoris, 2011, p.37).

There are many ways of generating actions or paths, however their utility

is nearly all exclusively based on the information gain, which is the estimated

reduction of entropy a particular action or path would achieve. A few utilities

use f-measures such as the Kullback-Leibler divergence. Evaluation of different

utility metrics are presented in Carrillo et al. (2012); Carlone et al. (2010).

5.3 Bayesian State Space Estimation

Bayesian State Space Estimation (BSSE) focuses on incorporating observa-

tions to update a prior distribution to a posterior distribution over the state

space through the application of Bayes probability rules. The agent’s random

variable, A, is associated with the uncertainty of its location in the world, the

same holds for the object(s’) random variable(s), O. Given a sequence of ac-

122

Figure 5.3: Directed graphical model of dependencies between the agent(A) and ob-
ject(O)’s estimated location. Each object, O(i) is associated with one sens-
ing random variable Y (i). The overall sensing random variable is Y =[
Y (1), . . . , Y (M−1)

]T
, where M is the total number of agent and object random

variables in the filter. For readability we have left out the time index t from A
and Y . Since the objects are static, they have no temporal process associated
with them thus they will never have a time subscript. The two models neces-
sary for filtering are the motion model P (At|At−1, ut) (red) and measurement
model P (Yt|At, O) (blue).

tions and observations, {u1:t, y0:t} (subscript 0 : t is the set from the start time

t = 0 to the current time, t = t), algorithms of the BSSE family incorporate

this information to provide an estimate:

P (At, O|Y0:t, u1:t) (5.3.1)

This is known as the filtering problem where all past information is incor-

porated to estimate the current state.

In Figure 5.3 we depict the general Bayesian Network (BN) of a BSSE. The

BN conveys two types of information, the dependence and independence relation

between the random variables in the graph which can be established through

d-separation Shachter (1998), see Figure 5.4. Any joint probability distribution

whose factorisation respects the structure of a BN is guaranteed to satisfy all the

conditional independence statements which can be read from the graph, but the

converse with respect to the dependence statements is not guaranteed (Barber,

2012, p.43).

The conditional dependence A

⊥⊥

O|Y is key to all BSSE and SLAM algo-

rithms. The strength of the dependence between the agent and object random

variable is governed by the measurement likelihood P (Yt|At, O). If the mea-

surement likelihood does not change the joint distribution then the agent and

123

Conditional independence
1) At+1 ⊥⊥ At−1|At First order Markov property.
2) At ⊥⊥ Yt+1|At+1 Past states do not depend on future observa-

tions.
3) A ⊥⊥ O|∅ Agent and object random variables are inde-

pendent given no observation.
Conditional dependence
1) A

⊥⊥

O|Y Agent and object random variables will inter-
act with each other given an observation

Dependence & Independence

Figure 5.4: Dependence and independence relation between the random variables of the
BN Figure 5.3

object random variables will be independent, A ⊥⊥ O. If they are independent,

then no information acquired by the agent can be used to infer changes in the

object estimates.

We next demonstrate the behaviour of the BN joint distribution, Figure

5.3, for two different parameterisations in the case of the absence of direct

sighting of the object by the agent. We first consider a Multivariate Gaussian

parameterisation of the joint distribution, which is known as EKF-SLAM, and

a different approach which discretises the joint distribution, called Histogram-

SLAM.

EKF-SLAM

In EKF-SLAM the joint density p(At, O|Y0:t, u1:t) = g(x;µt,Σt) is parametrised

by a single Gaussian function g with mean, µt = [µAt , µO(1) , . . . , µO(M−1)]
T ∈

R3+2·(M−1) where the random variables are in R2, and covariance, Σt. The

mean value of the agent µa = [x, y, φ]T ∈ R3 and those of the objects are

µO(i) = [x, y]T ∈ R2.

Σt =

[
Σa Σao

Σoa Σo

]
∈ R(3+2·(M−1))×(3+2·(M−1)) (5.3.2)

The j’th object measurement is described by range and bearing Y
(j)
t = [r, φ]

in the frame of reference of the agent, see Figure 2.4 page 21 for an illustration

of a measurement update process. EKF-SLAM assumes that the measurement

is corrupted by Gaussian noise, ε ∼ N (0, R), and this results in a measured

124

7200 7250 7300 7350 7400 7450 7500 7550 7600 7650 7700
0

2

4

6

7200 7250 7300 7350 7400 7450 7500 7550 7600 7650 7700
0

0.5

1

y
ŷ

3 4

a
o
ao

0 5 10 15
0

0.2

0.4

0.6

0 5 10 15
0

0.2

0.4

0.6

0 5 10 15
0

0.2

0.4

0.6

0 5 10 15
0

0.2

0.4

0.6

1

2

3

4

Figure 5.5: a) EKF-SLAM time slice evolutions of the pdfs. The temporal ordering is given
by the numbers in the top right corner of each plot. The blue pdf represents
the agent’s believed location and the circle is the agent’s true location. The
same holds for the red distribution which represents the agent’s belief of the
location of an object. b) Evolution of the covariance components of Σ over

time and true Yt and expected measurements, Ŷt. Σa and Σo are the variances
of the agent and object positions and Σao is the cross-covariance term.

likelihood function of the following form:

p(Yt|At, Ot) =
1

|2πR| 12
exp

(
−1

2

(
Yt − Ŷt

)T
R−1

(
Yt − Ŷt

))
(5.3.3)

Ŷt = exp

(
− 1

2σ2
||At −O||2

)
(5.3.4)

where the covariance, R, encompasses the uncertainty in the measurement and

Equation 5.3.4 is the measurement function. The elements of the covariance

matrix capture the measurement error between the true Y and expected Ŷ

range and bearing of the object. As the joint distribution is parametrised by a

single Multivariate Gaussian, a closed form solution to the filtering Equations

exists, called the Kalman Filter Durrant-Whyte and Bailey (2006).

The error between the true and expected measurement e = (Yt − Ŷt) is an

important part of the application of EKF-SLAM. In our scenario the agent can

only perceive the objects once he enters in direct contact with them. This means

that the variance of the observation Yt will be very low and will always be equal

to Ŷ until a contact occurs. To illustrate the problems which this gives rise to,

we give an illustration of a 1D search. Figure 5.5 shows the resulting updates

of the beliefs for 4 chosen time segments.

As expected we do not get the desired behaviour, which is that the beliefs

start updating as soon as they are overlapping, see 2nd-3rd temporal snapshot in

the Figure. Even when most of the belief mass of the agent’s location pdf over-

laps that of the object pdf, no belief update occurs. The multivariate Gaussian

125

parameterisation only guarantees a dependency between the agent and object

random variables when there is a positive sighting of the landmarks. This can

been seen in Figure 5.5 (b), where the component Σao is 0 most of the time

which implies that A ⊥⊥ O|Y which is undesirable. This confirms that the de-

pendencies present in the structure given by the BN are dependent on the chosen

parametrisation.

Histogram-SLAM

In Histogram-SLAM, the joint distribution is discretized and each bin has a

parameter, P (At = i, O = j|Y0:t, u1:t;θ) = θ(ij), which sums to one,
∑
ij θ

(ij) = 1.

For shorthand notation we will write P (At, O|Y0:t, u1:t) instead of

P (At = i, O = j|Y0:t, u1:t;θ). The probability distribution of the agent’s posi-

tion is given by marginalising the object random variable:

P (At|Y0:t, u1:t;θa) =

|O|∑
j=1

P (At, O = j|Y0:t, u1:t;θ) (5.3.5)

The converse holds true for the object’s marginal, that is Equation 5.3.5 sum-

mation would be over the agents variable . Figure 5.6 (Top) illustrates the joint

distribution of both the agent and the object random variable. The 1D world of

the agent and object is discretised to 10 states, producing a joint distribution

with a 100 parameters! For a state space of N bins, s = 1...N , and M random

variables (one agent and M −1 objects) the joint distribution will have NM pa-

rameters. This exponential increase renders Histogram-SLAM intractable with

this parameterisation.

In the tasks we consider, an observation occurs only if the agent enters in

contact with the object, which implies that both occupy the same discrete state.

The likelihood function P (Yt|At, O) is:

P (Yt = 1|At, O) =

1 if At = O

0 if At 6= O
(5.3.6)

Figure 5.6 (Bottom left), illustrates the likelihood of Equation 5.3.6 in the

case when a no contact measurement Yt = 0 is present in a 1D world. When

there is no measurement all the parameters of the joint distribution which are in

the black regions become zero, which we refer to as the dependent states A∩O
of the joint distribution. The white states are the independent states A	O,

they are not changed by the likelihood function. The likelihood function is sparse

in the sense that there is only a small region which gets affected by the likelihood.

The values of the joint distribution in those states, P∩(At, O|Y0:t, u1:t), will be

unchanged P	(At, O|Y0:t, u1:t) ∝ P	(At, O|Y0:t−1, u1:t). When the object is

detected (Bottom right) the likelihood constrains all non-zero values of the joint

126

Figure 5.6: Top: Left: Initialisation of the agent and object joint distribution. Right:
Marginals of the agent and object parameterised by θa and θo, giving the
probability of their location. The marginal of each random variable is obtained
from Equation 5.3.5. The probability of the agent and object being in state
s = 6 is given by summing the blue and red highlighted parameters in the joint
distribution. Bottom: Likelihood P (Yt|At, O), the white regions A ∩ O will
leave the joint distribution unchanged whilst the black regions will evaluate
the joint distribution to zero. Left: No contact detected with the object, the
current measurement is Yt = 0, both the agent and object cannot be in the same
state. Right: The agent entered into contact with the object and received a
haptic feedback Yt = 1. The agent receives only two measurement possibilities,
contact or no contact.

127

distribution to be in states i = j, which in the case of a 2-dimensional joint

distribution is a line. The sparsity of the likelihood function will be key to

the development of the MLMF filter. Two models are needed to perform the

recursion, namely the motion model P (At|At−1, ut) and the measurement model

P (Yt|At, O), which we already detailed. Both models applied consecutively to

the initial joint distribution results in a posterior distribution. Both Equation

5.3.8-5.3.9 are part of the histogram Bayesian filter update:

intialisation

P (A0, O;θ) = P (A0;θa)P (O;θo) = θa × θo (5.3.7)

motion

P (At, O|Y0:t−1, u1:t) =
∑
At−1

P (At|At−1, ut)P (At−1, Ot|Y0:t−1, u1:t−1) (5.3.8)

measurement

P (At, O|Y0:t, u1:t) =
P (Yt|At, O)P (At, O|Y0:t−1, u1:t)

P (Yt|Y0:t−1, u1:t)
(5.3.9)

Histogram Bayesian recursion

For the derivation of these two steps, the reader is referred to Appendix B.2.

Figure 5.7 illustrates the evolution of the joint distribution in a 1D example.

The agent and object’s true positions (unobservable) are in state 6 and 1. The

agent moves four steps towards state 10. At each time step, as the agent fails

to sense the object, the likelihood function P (Yt = 0|At, O) (Figure 5.6, Bottom

left) is applied. As the agent moves towards the right, the motion model shifts

the joint distribution towards state 10 along the agent’s dimension, i (note that

state 1 and 10 are wrapped).

As the agent moves to the right more joint distribution parameters become

zero. The re-normalisation by the evidence (P (Yt|Y0:t−1, u1:t), denominator

of Equation 5.3.9), which increases the value of the remaining parameters, is

equal to the sum of the probability mass which was set to zero by the likelihood

function, thus the values of the parameters of the joint distribution which fall on

the pink line in Figure 5.7 (green line also, but only for first time slice) become

zero and their values are redistributed to the remaining non-zero parameters.

This is an important aspect which will be present in MLMF and we define

this to be α ∈ R.

When the agent enters into contact with the object and senses it, the like-

lihood function P (Yt = 1|At, O), Figure 5.6 (Bottom right), is multiplied with

the joint distribution. The result is illustrated in Figure 5.8. Only the joint

distribution’s parameters whose indices satisfy i = j will remain unchanged.

All the other parameters become zero. In this case there is no need to evaluate

the likelihood elsewhere in the joint distribution. The marginals are simply the

128

1

2

3

4

Figure 5.7: Histogram-SLAM, 4 time steps. 1 Application of likelihood P (Y0 = 0|A0, O)
and the agent remains stationary, u1 = 0, all states along the green line become
zero. 2 The agent moves to the right u1 = 1, the motion P (A1|A0, u1), and
likelihood models are applied consecutively. The right motion results in a shift
(black arrow on the left) in the joint probability distribution towards the state
i = 10. All parameters on the pink line are zero. 3 Same as two. 4 The original
result of the likelihood function, green line, has moved by the same amount as
the agent’s displacement. At each time step a new likelihood function (pink
line) is applied to the joint distribution.

129

Figure 5.8: Histogram-SLAM contact. The agent has entered in contact with the object
(measurement Yt = 1) and the likelihood function P (Yt = 1|At, O) is applied to
the joint distribution. Only parameters on the line i = j will remain unchanged
and parameters for which i 6= j will be set to zero.

normalisation of the line i = j. The evaluation of the joint distribution, given

that the object is sensed or not, is restricted to the states (i, j) for which i = j

and there are a total of N states. In retrospect the likelihood P (Yt = 1|At, O)

acts as a constraint, that is, the agent and object have to be in the same state,

given by a line traversing the 2D joint distribution.

The inconvenience with Histogram-SLAM is that its time and space com-

plexity is exponential as the joint distribution is discretised and parametrised

by θ(ij). Instead we propose a new filter, MLMF, which we formally introduce

in the next section. This filter achieves the same result as the Histogram filter

but without having to parameterise the joint distribution, thus avoiding the

exponential growth cost.

The key idea behind the mechanism of the MLMF filter is to evaluate

only the joint distribution in states (i, j) for which the likelihood is zero and

apply the updates directly to the marginals without parameterising the values of

the joint distribution. The MLMF filter parametrises explicitly the marginals

P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo). This contrasts the Histogram filter where the

marginals are derived from the joint distribution by marginalisation. In order

to respect the Bayesian recursion, the MLMF memorises the complete history

of likelihood functions {P (Yt|At, O)}t=0:T and the normalisation coefficient α.

The reasons for this will be made clear in the next section. Below we summarise

the parameters of the Histogram and the desired MLMF parameters:

Histogram : θ(ij)

desired-MLMF : θ
(s)
a , θ

(s)
o , α, {(Y, l)i}i=0:t

s, i, j = 1, . . . , N

The likelihood function is parametrised by a measurement, Yt and offset l

to the i-axis. In Figure 5.7 we see that the likelihood applied at the first time

step (green line) is superimposed on the line i = j. As actions are applied,

130

u1:3 = [1, 1, 1], the first likelihood function (green line) shifts by an amount

corresponding to the total displacement (4 in this case). See the last sub-figure

of 5.7. The second likelihood applied at t = 1 will have an offset corresponding

to the sum u1:3, the third will have an offset of u2:3 and so on and so forth.

The MLMF, which we mathematically derive in the next section, keeps as

parameters the marginals, likelihood function parameters and a normalisation

constant. The marginals are updated (filter recursion) by evaluating the joint

distribution in states which are set to zero by the current applied likelihood and

removing the value of the zeroed parameters from the marginals.

5.4 Measurement Likelihood Memory Filter

MLMF keeps a function parameterisation of the joint distribution in-

stead of a value parameterisation as it is the case for Histogram-SLAM. At

initialisation the joint distribution is represented by the product of marginals,

Equation 5.4.1, which would result in the joint distribution illustrated in Figure

5.6, if it were to be evaluated at all states (i, j) as it is done for Histogram-

SLAM, Equation 5.3.7. MLMF will only evaluate this product, when necessary,

at specific states. At each time step the motion and measurement update are

applied, Equation 5.4.2-5.4.3. An important distinction is that these updates

are performed on the un-normalised joint distribution, which is not the case

in Histogram-SLAM where the updates are done on the conditional, Equation

5.3.8-5.3.9. After applying multiple motion and measurement updates the re-

sulting joint distribution is given by Equation 5.4.4, see Appendix B.3 for a

step-by-step derivation.

131

joint marginals (initial)

P (A0, O) = P (A0;θ∗a)P (O;θ∗o) (5.4.1)

motion

P (At, O, Y0:t−1|u1:t) =
∑
At−1

P (At|At−1, ut)P (At−1, O, Y0:t−1|u1:t−1) (5.4.2)

measurement

P (At, O, Y0:t|u1:t;θ
∗
o ,θ
∗
a,Ψ0:t) =

P (Yt|At, O)P (O;θ∗o)P (At|u1:t;θ
∗
a)P (Y0:t|At, O, u1:t; Ψ̄0:t) (5.4.3)

joint

P (At, O|Y0:t, u1:t;θ
∗
o ,θ
∗
a,Ψ0:t,α0:t) =

P (At, O, Y0:t|u1:t;θ
∗
o ,θ
∗
a,Ψ0:t)

P (Y0:t|u1:t;α0:t)
(5.4.4)

filtered marginal

P (At|Y0:t;θa) = P (At|Y0:t−1;θa)−
(
P∩(At|Y0:t−1)− P∩(At|Y0:t)

)
(5.4.5)

P (O|Y0:t;θo) = P (O|Y0:t−1;θo)−
(
P∩(At|Y0:t−1)− P∩(At|Y0:t)

)
(5.4.6)

MLMF Bayesian filter

The MLFM filter is parameterised by the agent and object joint marginals

P (At|u1:t;θ
∗
a), P (O;θ∗o), the filtered marginals P (At|Y0:t, u1:t;θa) (u1:t not

shown in the above box), P (O|Y0:t;θo), the evidence P (Y0:t|u1:t;α0:t) and the

history of likelihood functions, P (Y0:t|At, O, u1:t; Ψ0:t) Equation 5.4.7, which is

the product of all the likelihood functions since t = 0 until t and we will refer

to it as the memory likelihood function:

P (Y0:t|At, O, u1:t; Ψ0:t) :=

t∏
i=0

P (Yi|At, O, ui+1:t; li) (5.4.7)

P (Yi = 0|At, O, ui+1:t; li) :=

0 if At + li = O

1 else
(5.4.8)

li :=

t∑
j=i+1

uj (5.4.9)

The memory likelihood function’s parameters Ψ0:t = {(Yi, li)}i=0:t consist of

a set of measurements Y0:t and offsets l0:t depicted in greed. The measurements

Yi ∈ {0, 1} are always binary, whilst the offsets li, actions ut, agent At and object

O variables’ size are equal to the dimension of the state space. The subscript i

of an offset li indicates which likelihood function it belongs to. The offset of a

likelihood function is given by the summation of all the applied actions from the

time the likelihood was added until the current time t, Equation 5.4.9, which

can be computed recursively.

132

In Algorithm 2, we detail how an action ut and measurement Yt, result in

the update of the memory likelihood’s parameters from Ψ0:t−t to Ψ0:t; this is

an implementation of Equations 5.4.2-5.4.3.

Algorithm 2: Memory Likelihood update

input : Ψ0:t−1, Yt, ut

output: Ψ0:t

motion update Ψ̄0:t ← Ψ0:t−1

1 for li ∈ Ψ0:t−1 do

2 li = li + ut

measurement update

3 Ψ0:t ← {Ψ̄0:t, (Yt, lt := 0)}

Figure 5.9 illustrates the evolution of the un-normalised MLMF joint dis-

tribution, Equation 5.4.4. For ease of notation we will omit at times the param-

eters of the probability functions. Both P (A0;θ∗a) and P (O;θ∗o) were initialised

as for the Histogram-SLAM example in Figure 5.7 on page 129. Two actions

u1:2 = 1 are applied and three measurements Y0:2 = 0 received which are then

integrated into the filter. Since initialisation of the joint distribution at t = 0

until t = 2 the object’s marginal P (O;θ∗o) remains unchanged and the agent’s

marginal P (A2|u1:2;θ∗a) is updated by the two actions according to the motion

update, see Figure 5.9 Top-right. The product of these two marginals (terms of

Equation 5.4.4 before the memory likelihood product) results in the joint prob-

ability distribution P (A2, O|u1:2;θ∗a,θ
∗
o) illustrated in Figure 5.9 Middle-right.

In the left column of Figure 5.9 we illustrate how the memory likelihood

term, Equation 5.4.7, is updated according to Algorithm 2. In the Top-left, the

first likelihood function P (Y0|A2, O, u1:2; l0) is illustrated. As two actions have

been applied, Algorithm 2 is applied twice which results in a l0 = 2 parameter

for the first likelihood function. In the figure we highlighted the likelihood in

light-green to indicate that it was the first added to the memory term making

it convenient to compare to Figure 5.7 on page 129. As for the second likeli-

hood function P (Y1|A2, O, u2; l1) only one action has been applied and the third

likelihood function P (Y2|A2, O; l2 = 0) has not yet been updated by the next

action. The parameters of the memory likelihood function, Equation 5.4.7, are:

Ψ0:2 = {(0, 2)i=0, (0, 1)i=1, (0, 0)i=2} and the evaluation of memory likelihood is

depicted in the Bottom-left of Figure 5.9.

The reader may have noticed that the amplitude of the values of the joint

distribution illustrated in Figure 5.9 have not changed when compared with

Figure 5.7 on page 129. This is because we have not re-normalised the joint

distribution by the evidence P (Y0:t|u1:t;α0:t).

Our goal is to be able to compute the marginals P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo)

of the agent and object random variables and evidence P (Y0:t|u1:t;α0:t) with-

133

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

0.002

0.01

0.02

0.002

0.01

0.02

Figure 5.9: Un-normalised MLMF joint distribution, numerator of Equation 5.4.4, at time
t = 2. Three measurements (all Y = 0) and two actions (both u = 1) have
been integrated into the joint distribution, for simplicity we do not consider
any motion noise. Left column: The first plot illustrates the likelihood of the
first measurement Y0. We highlight the contour in light-green to indicate that
it was the first applied likelihood function (see the correspondence with Figure
5.7). The first likelihood function has been moved by the 2 actions, the second
likelihood function has been moved by one action (the last one, u2 = 1) and the
third likelihood has had no action applied to it yet. The last applied likelihood
function is highlighted in pink and the product of all the likelihoods since t = 0
until t = 3 is depicted at the bottom of the figure which is P (Y0:2|A2, O, u1:2).
Right column: the top figure illustrates the original marginal of the object
P (O;θ∗o), which remains unchanged, and the agent’s marginal P (A2|u1:2;θ∗a)
which has moved in accordance to the motion update function. Their product
would results in the joint distribution P (A2, O|u1:2;θ∗a,θ

∗
o) illustrated in the

middle figure if evaluated at each state (i, j). The bottom figure is the result
of multiplying P (A2, O|u1:2;θ∗a,θ

∗
o) with P (Y0:2|A2, O, u1:2; Ψ0:2) giving the

filtered joint distribution, Equation 5.4.4.

134

out having to perform an expensive marginalisation over the entire space

of the joint distribution as was the case for Histogram-SLAM. The next section

describes how to efficiently compute the evidence and the marginals. For ease

of notation we will not always show the conditioned actions u1:t.

5.4.1 Evidence and marginals

In order to compute efficiently the marginal likelihood (also known as evi-

dence) P (Y0:t|u1:t;α0:t) and the filtered marginals P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo)

we take advantage of the fact that only a very small area in the joint distribution

space will be affected by the measurement likelihood function at each time step.

Without lost of generality the likelihood function will only make a difference

to dependent A ∩O states in the joint distribution, states where the likelihood

function is less than one. The states inside A 	 O will not be affected, where

the likelihood function is equal to one. Figure 5.10 shows the relation between

the measurement function P (Yt|At, O) and the joint distribution P (At, O|Y0:t)

for three different initialisations.

As illustrated and explained in Figure 5.10, the joint distribution can be

decomposed in a dependent and independent term (Equation 5.4.10).

P (At, O|Y0:t) = P∩(At, O|Y0:t) + P	(At, O|Y0:t) (5.4.10)

The probability mass covered by the dependent term is located within the

measurement function’s tube and the independent probability mass is located

outside. This formulation will lead to large computational gain as the indepen-

dent term is not influenced by the measurement function: P	(At, O,Y0:t) =

P	(At, O,Y0:t−1) and P	(At, O|Y0:t) ∝ P	(At, O|Y0:t−1).

Evidence

The evidence of the measurement P (Y0:t|u1:t;α0:t) is the normalisation coeffi-

cient of the joint distribution Equation 5.4.4. It is the amount of probability

mass re-normalised to the other parameters as a result of the consecutive ap-

plication of the likelihood function. At time step t, the normalising factor to

be added to the evidence is the difference between the probability mass lo-

cated inside A∩O before and after the application of the measurement function

P (Yt|At, O), see Equation 5.4.11-5.4.12 (see Appendix B.4 for the full deriva-

tion).

αt =
∑
At

∑
O

(
P (Yt|At, O)− 1

)
P∩(At, O, Y0:t−1|u1:t) (5.4.11)

P (Y0:t|u1:t;α0:t) = 1 + α0:t−1 + αt︸ ︷︷ ︸
α0:t

(5.4.12)

135

100

0

50

0 50 100

100

0

50

0 50 100

100

0

50

0 50 100

Figure 5.10: a) Likelihood P (Yt = 0|At, O), the blue area depicts the regions in which
the likelihood is < 1 and the red area is where the likelihood is = 1. If
the probability mass of the joint distribution is in the blue region, then the
parameters of the random variables in these areas are dependent, A ∩ O.
Otherwise they are independent, A	O. b) The agent and object marginals are
not overlapping and are thus completely independent. The joint distribution,
P (At, O|Y0:t) the black rectangle, is not intersecting with the measurement
function. As a result P∩(At, O|Y0:t) is empty. c) The marginals overlap
resulting in the measurement likelihood function intersecting with the joint
distribution. The joint distribution is composed of the blue and red areas,
Equation 5.4.10. The probability mass at the intersection is removed and re-
normalised to other regions which is the result of applying Bayes integration.
d) The marginals of A and O are completely overlapping, however only a
small fraction of the probability mass in the joint distribution is within the
measurement function’s tube.

136

The advantage of Equation 5.4.11 is that the summation is only over the

states which are in the dependent area ∩ of the joint distribution. This is

generally always much smaller than the full space itself. Until an object is

sensed, the likelihood will always be zero P (Yt|At, O) = 0 and αt will correspond

to the probability mass which falls within the region of the joint distribution in

which the likelihood function is zero. In Figure 5.10 b) & d), the sum of the

probability mass in the blue regions is equal to αt. The point of interest is that

as we perform the filtering process we will never re-normalise the whole joint

distribution, but only keep track of how much it should have been normalised.

To this end the marginals P (At|u1:t;θ
∗
a) and P (O;θ∗o) are never re-normalised

but are used at each step to compute how much of the probability mass αt should

go to the normalisation factor P (Y0:t|u1:t;α0:t). The normalisation factor in

question will never be negative, as the joint distribution sums to one and each

αt represents some of the mass removed from the joint distribution. Since we

keep track of the history of applied measurement likelihood functions the same

amount of probability mass is never removed twice from the joint distribution.

Marginals

There are two different sets of marginals used in the MLMF filter. The first

set are the joint marginals of the joint distribution, Equation 5.4.4 parame-

terised by θ∗a and θ∗o . The second set of marginals are the filtered marginals

which are updated by evaluating the joint distribution in dependent states and

are parameterised by θa and θo. At initialisation before the first action or ob-

servation is made the parameters of the filtered marginal are set equal to those

of the joint distribution.

In Histogram-SLAM both the agent and object marginals are obtained, at

each time step, by marginalising the joint distribution. This requires storing and

summing over all the parameters of the joint distribution which is expensive.

Instead the MLMF takes advantage of the sparsity of the likelihood function

which results in only the dependent elements of the marginal being affected,

Equation 5.4.13 (see Appendix B.5 for the full derivation of Equation 5.4.13).

P (O|Y0:t;θo) = P (O|Y0:t−1;θo)−
(
P∩(O|Y0:t−1)−P∩(O|Y0:t)

)
(5.4.13)

P∩(O|Y0:t;θ
∗
a,θ
∗
o ,Ψ0:t,α0:t) =

∑
At

P∩(At,O|Y0:t,u1:t;θ
∗
a,θ
∗
o ,Ψ0:t,α0:t)

=

∑
At

P∩(O;θ∗o)P∩(At|u1:t;θ
∗
a)P (Y0:t|At, O, u1:t; Ψ0:t)

P (Y0:t|u1:t;α0:t)
(5.4.14)

137

6

6

6

6

6 6

Figure 5.11: Filtered marginals. Illustration of the agent and object marginal update,
Equation 5.4.13. The joint distribution parameters which are independent
A 	 O are pale and the dependent areas A ∩ O, where P (Yt < 1|At, O),
are bright. MLMF only evaluates the joint distribution in dependent states.
For each state s of the marginals 1, . . . , 10 the difference of the marginals
inside the dependent area, before and after the measurement likelihood is ap-
plied, is evaluated and removed from the marginals P (At|Y0:t−1, u1:t;θa),
P (O|Y0:t−1;θo) leading to P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo) (we did not
show u1:t in the figure for ease of notation). Bottom-left : joint marginals
P (At|u1:t;θ∗a) and P (O;θ∗o) remain unchanged by measurements.

138

Equation 5.4.13 is recursive, P (O|Y0:t;θo) is computed in terms of P (O|Y0:t−1;θo).

Figure 5.11 illustrates a measurement update of the MLMF. The illustrated

marginals (Bottom row) are (on the left) the joint marginals P (At|u1:t;θ
∗
a),

P (O;θ∗o) and (on the right) the filtered marginals P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo).

The shape of the joint marginals remain unchanged by measurements dur-

ing the filtering process, they are the parameters of the joint distribution used

to update the filtered marginals. Table 5.1 summarises the functions and pa-

rameters of the MLMF for two random variables, an agent and object.

functions parameters description
P (At|Y0:t, u1:t) : θa filtered marginals
P (O|Y0:t) : θo
P (At|u1:t) : θ∗a joint marginals
P (O) : θ∗o
P (Y0:t|u1:t) : α0:t ∈ R evidence
P (Y0:t|At, O, u1:t) : Ψ0:t = {(Yi, li)}i=0:t likelihood history

Table 5.1: MLMF functions with associated parameters. The marginal parameters are the
discretisation of the state space θ ∈ RN , θ(s) correspond to the probability being
in state s.

5.4.2 MLMF-SLAM Algorithm

In Algorithm 3 we detail the motion-measurement update and initialisation

steps of the MLMF (the parameters of P∩(At, O, Y0:t−1|u1:t) and the correspond-

ing marginals are not shown). At initialisation the parameters of the filtered

marginals are set equal to the marginals of the MLMF joint distribution. In

the motion step the agent’s marginals of the filtered and joint distribution are

updated in accordance with the motion model. The offsets l0:t of the memory

likelihood function get the current action added to them. In the measurement

step the evidence is computed, the filtered marginals are updated by only car-

rying out the marginalisation in the dependent states of the joint distribution.

Finally the current measurement Yt is added to the memory likelihood’s param-

eters with lt = 0.

This formulation is advantageous as the joint distribution is only evaluated

inside the dependent regions A∩O of the joint distribution. All the parameters

Ψ0:t of the memory likelihood function P (Y0:t|At, O, u1:t; Ψ0:t) are retained. We

keep track of the normalisation factor, the evidence P (Y0:t|u1:t;α0:t) which is

a scalar quantity. With these parameters it is possible to reconstruct the joint

distribution, however the MLMF-SLAM algorithm only makes changes to the

filter marginals, see Figure 5.11.

We evaluate this formulation of the joint distribution with the standard

histogram filter in the case of the 1D filtering scenario illustrated in Figure 5.7

on page 129 and we find them to be identical. Having respected the formulation

139

of Bayes rule, we assert that Algorithm 3 is a Bayesian Optimal Filter1.

Next we evaluate both space and time complexity of the MLMF filter.

1An optimal Bayesian solution is an exact solution to the recursive problem of calculating
the exact posterior density Arulampalam et al. (2002b)

140

Algorithm 3: MLMF-SLAM

input :

measurements

Yt, ut

joint parameters:

P (At−1|u1:t−1;θ∗a) P (O;θ∗o), Ψ0:t−1, α0:t−1

filtered marginals:

P (At−1|Y0:t−1, u1:t−1;θa), P (O|Y0:t−1;θo)

output:

joint parameters:

P (At|u1:t;θ
∗
a), Ψ0:t, α0:t

filtered marginals:

P (At|Y0:t, u1:t;θa), P (O|Y0:t;θo)

initialisation

P (A0;θa) := P (A0;θ∗a)

P (O;θo) := P (O;θ∗o)

Ψ0 := {}

α0 := 0

motion update

P (At|u1:t;θ
∗
a) =

∑
At−1

P (At|At−1,ut)P (At−1|u1:t−1;θ∗a)

P (At|Y0:t−1, u1:t;θa) =
∑
At−1

P (At|At−1,ut)P (At−1|Y0:t−1, u1:t−1;θa)

Ψ̄0:t ← Ψ0:t−1(ut) : Algorithm 2 (motion update)

measurement update

α0:t = α0:t−1 +
∑
At

∑
O

(
P (Yt|At, O)− 1

)
P∩(At, O, Y0:t−1|u1:t)

P (Y0:t|u1:t;α0:t) = 1 + α0:t

P (At|Y0:t;θa) = P (At|Y0:t−1;θa)−
(
P∩(At|Y0:t−1)− P∩(At|Y0:t)

)
P (O|Y0:t;θo) = P (O|Y0:t−1;θo)−

(
P∩(Ot|Y0:t−1)− P∩(Ot|Y0:t)

)
Ψ0:t ← Ψ̄0:t(Yt) : Algorithm 2 (measurement update)

141

5.4.3 Space & time complexity

For discussion purposes we consider the case of three beliefs, namely that

of the agent and two other objects O(1) and O(2), we subsequently generalise.

As stated previously M stands for the number of filtered random variables

including the agent and N is the number of discrete states in the world. In the

following section, we compare the space and time complexity of MLMF-SLAM

with Histogram-SLAM.

Space complexity

Figure 5.12 Left illustrates the volume occupied by the joint distribution for

a space with N states. Histogram-SLAM would require N3 parameters for the

joint distribution P (A,O(1), O(2);θ) and 3N parameters to store the marginals.

In general for M random variables NM + M N parameters are necessary, give

a space complexity of O(NM).

For MLMF-SLAM, each random variable requires two sets of parameters, θ

and θ∗ (see Table 5.1). Given M random variables, the initial number of param-

eters is M(2N). At every time step the likelihood memory function increments

by one measurement and offset, (Yt, l = 0) (Algorithm 2). Given a state space

of size N , there can be no more than N different measurement functions (one

for each state). In the worst case scenario the number of memory likelihood

function parameters Ψ0:t, Equation 5.4.7, will be N . The total number of pa-

rameters is M(2N) +N which gives a final worst case space complexity which

is linear in the number of random variables, O(N M).

Time complexity

For Histogram-SLAM, the computational cost is equivalent to that of the

space complexity, O(NM), since every state in the joint distribution has to be

summed to obtain all the marginals.

For MLMF-SLAM, every state in the joint distribution’s state space which

has been changed by the likelihood function has to be summed, see Figure 5.11

on page 138. As a result the computational complexity is directly related to the

number of dependent states |A ∩ O|. In Figure 5.11, this corresponds to states

where i = j and there are N out of a total N2 states for that joint distribution.

Figure 5.12 (Left) illustrates a joint distribution with N3 states. The dependent

states |A∩O(1)∩O(2)| are those which are within the blue and red planes (where

the likelihood evaluates to zero) and comprise N2 states each, giving a total of

2N2 −N dependent states (negative is to remove the states we count twice at

the intersection of the blue and red plane).

142

Parmeter space of the joint distribution
of three random variables

Scalable-MLMF

Figure 5.12: Left: Joint distribution P (A,O(1), O(2)) of the agent and two objects. Each
measurement likelihood function, P (Y |A,O(1)), P (Y |A,O(2)) corresponds to
a hyperplane in the joint distribution The state space is discretised to N bins
giving the total number of parameters in the joint distribution of N3. Right:
Scalable-MLMF Each agent-object joint distribution pair is modelled inde-
pendently. For clarity we have left out the action random variable u which

is linked to every agent node. Two joint distributions P (A(1), O(1)|Y (1)
0:t) and

P (A(2), O(2)|Y (2)
0:t) parametrise the graphical model. The dashed undirected

lines represent a wanted dependency, if present O(1) and O(2) are to be de-
pendent through A. In the standard setting there will be no exchange of
information between the individual joint distributions. However we demon-
strate later on how we perform a one time transfer of information when one
of the objects is sensed.

143

The likelihood term P (Yt|At, O(1)) evaluates states to zero which satisfy

(i = j,∀k), as the measurement of object O(1) is independent of object O(2).

With 3 objects, the joint distribution would be P (At = i, O(1) = j,O(2) = k,O(l) = l)

then the likelihood P (Yt|At, O(1)) evaluated to zero for (i = j,∀k,∀l) which

would mean N3 dependent states. In general, for M random variables the

computational cost is (M − 1)NM−1 which gives O(NM−1) as opposed to the

Histogram-SLAM’s O(NM). The computation complexity in this setup is still

exponential but to the order M −1 as opposed to M which nevertheless quickly

limits the scalability as more objects are added.

Computing the value of a dependent state (i, j, k) in the joint distribution

required evaluating Equation 5.4.4 which contains a product of N likelihood

functions, in the worst case scenario. However the likelihood functions are not

overlapping and binary. As a result the complete product does not have to be

evaluated since only one likelihood function will effect the state (i, j, k). Thus

evaluating Equation 5.4.4 yields a cost of O(1) and not O(N).

5.4.4 Scalable extension to multiple objects

To make the MLMF filter scalable we introduce an independence assump-

tion between the objects and model the joint distribution (Equation 5.4.15) as

a product of agent-object joint distributions:

P (At, O
(1), · · · , O(M−1)|Y0:t, u1:t) =

M−1∏
i=1

P (A
(i)
t , O(i)|Y (i)

0:t , u1:t) (5.4.15)

The measurement variable Yt, is the vector of all agent-object measurements,

Yt =
[
Y

(1)
t , . . . , Y

(M−1)
t

]T
. Each agent-object joint distribution has its own

parametrisation of the agent’s marginal, A
(1)
t , . . . , A

(M−1)
t which combine to

give the overall marginal of the agent At. The computation of each object

marginal P (O(i)|Y (i)
0:t) is independent of the other objects. This is evident from

the marginalisation see Equation 5.4.16-5.4.17.

P (O(i)|Y (i)
0:t , u1:t) =

∑
A

(i)
t

P (A
(i)
t , O(i)|Y (i)

0:t , u1:t) (5.4.16)

P (At|Y0:t, u1:t) =

M−1∏
i=1

P (A
(i)
t |Y

(i)
0:t , u1:t) (5.4.17)

The independence assumption will create an unwanted effect with respect to

agent’s marginal P (At|Y0:t, u1:t). At initialisation the agent marginals should

be equal, P (A0|Y0) = P (A
(i)
0 |Y

(i)
0)∀i, however this is not the case because of

Equation 5.4.17. To overcome this we define the final marginal, P (At|Y0:t, u1:t),

144

of the agent as being the average of all the individual pairs P (A(i)|Y (i)
0:t , u1:t).

P (At|Y0:t, u1:t) :=
1

M − 1

M−1∑
i=1

P (A
(i)
t |Y

(i)
0:t , u1:t) (5.4.18)

Figure 5.12 (Right), depicts the graphical model of the scalable formula-

tion. As each joint distribution pair has its own parametrisation of the agent’s

marginal and these do not subsequently get updated by one another, the infor-

mation gained by one joint distribution pair is not transferred. A solution is

to transfer information between the marginals A(i) at specific intervals namely

when one of the objects is sensed by the agent.

Algorithm 4: Scalable-MLMF: Measurement Update

input : P (A
(i)
t |u1:t), P (A

(i)
t |Y

(i)
0:t−1, u1:t)

P (O(i)), P (O(i)|Y (i)
0:t−1, u1:t)

Y
(i)
t

i = 1, · · · ,M

. If object i has been sensed by the agent

1 if Y
(i)
t == 1 then

2 P (O(i)|Y (i)
0:t)← P (O(i)|Y (i)

0:t−1) ; . measurement update Algo. 3

3 P (A
(i)
t |Y

(i)
0:t , u1:t)← P (A

(i)
t |Y

(i)
0:t−1, u1:t)

4 forall the j ∈ (1, . . .M − 1) \ i do

5 P (A
(j)
t |Y0:t, u1:t) = P (A

(i)
t |Y0:t, u1:t)

6 P (A
(j)
t |u1:t) = P (A

(i)
t |u1:t)

7 P (O(j)|Y (i)
0:t)←

∑
A(j)

P (A
(j)
t , O(j)|Y (i)

0:t) ; . object j marginal

8 else

9 forall the i ∈ (1, . . .M) do

10 measurement update Algo. 3

The exchange of information of one joint distribution to another is achieved

through the agent’s marginals A(i) according to Algorithm 4. The measurement

update is the same as previously described in Algorithm 3 in the case of no

positive measurements of the objects. If the agent senses an object, all of the

agent marginals of the remaining joint distributions are set to the marginal of

the joint distribution pair belonging to the positive measurement Y
(i)
t .

Figure 5.13, depicts the process of information exchange between object O(1)

and O(2) in the event that the agent senses O(2). Prior to the positive detection,

both marginals P (A
(1)
t |Y

(1)
0:t−1, u1:t) and P (A

(2)
t |Y

(2)
0:t−1, u1:t) occupy the same re-

gion and are identical. When the agent senses O(2) the line defined by the

measurement likelihood function P (Y
(2)
t |A

(2)
t , O(2)) becomes a hard constraint

implying that both the agent and O(2) have to satisfy this constraint.

Figure 5.14 shows marginals resulting from the joint distributions in Figure

5.13. The marginals in the Bottom left plot are the result after updating the

145

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Joints prior contact

Joints post contact

Figure 5.13: Transfer of information (joint distributions) Top: Joint distributions

of P (A
(1)
t , O(1)|Y (1)) and P (A

(2)
t , O(2)|Y (2)) prior sensing, Y

(2)
t = 1, see Fig-

ure 5.14 (Top right) for the corresponding marginals. The red and green
lines across the joint distributions correspond to the region in which the like-

lihood functions P (Y
(1)
t |A

(1)
t , O(1)) and P (Y

(2)
t |A

(2)
t , O(2)) will change the

joint distributions. The dotted blue lines are to ease the comparison ofthe
joint distributions prior and post sensing. Bottom right: After the agent has
sensed O(2), all the probability mass which was not overlapping the green line
becomes an infeasible solution to the agent and object locations. At this point

the marginals P (A
(1)
t |u1:t) 6= P (A

(2)
t |u1:t) are no longer equal (see the blue

marginals Top). Bottom left: The constraint imposed by the likelihood func-
tion of the second object (green line) is transferred to the joint distribution
of the first object according to Algorithm 4. This results in a change in the

joint distribution P (A
(1)
t , O(1)|Y (1)), which satisfies the constraints imposed

by the agent’s marginal from the joint distribution P (A
(2)
t , O(2)|Y (2)).

146

Initialisation Prior contact

Transfer
information

Independent

Measurement update

Figure 5.14: Transfer of information (marginals) Top left: Initial beliefs of the agent
and object’s location. The agent moves to the left until it senses object O(2).
Top right: Marginals prior the agent entering in contact with the green object,
see Figure 5.13 (Top) for an illustrate of the joint distributions. The black
arrow indicates the heading of the agent. Bottom left: resulting marginals

after setting the agent marginals of each joint distribution equal A
(1)
t = A

(2)
t

according to Algorithm 4. The object marginal P (O(2)|Y0:t) is recomputed.
Bottom right: resulting marginals in which the objects have no influence on
one another. Note that a transfer of information has caused a change in the
marginal O(1).

space time
Histogram O(NM) O(NM)

MLMF O(M N) O(N (M−1))
scalable-MLMF O(M N) O(M N)

Table 5.2: Time and space complexity summary For both MLMF and scalabe-MLMF
the worst case scenario is reported for the space complexity.

marginals A(i). The Bottom right plot shows the result for the case where the

objects remain independent.

The result of introducing a dependency between the objects through the

agent’s marginals in the event of a sensing and treating them independently gives

the same solution as the histogram filter in this particular case. However as each

individual marginal A
(i)
t diverges from the other marginals, the filtered solution

will diverge from the histogram’s solution. We assume however that the objects

are weakly dependent and sharing information during positive sensing events is

sufficient. In section 5.5.2 we will evaluate the independence assumption with

respect to the histogram filter.

Table 5.2 summarises the time and space complexity for the three filters.

5.5 Evaluation

147

1e+02 1e+03 1e+04 1e+05 1e+06

6e−07

4e−06

2e−05

0.0002

0.001

0.007

0.05

0.3

states
5 10 15 20 25

8e+06

2e+06

6e+05

2e+05

5e+04

1e+04

4e+03

1e+03

3e+02

1e+02

objects

st
at

es

3e−05
6e−05
0.0001
0.0002
0.0004
0.0008
0.001
0.003
0.005
0.01
0.02
0.04
0.07
0.1
0.2
0.5
0.9

Time (states vs objects)

11
7
5
3
1

objects

ti
m

e
 (

se
co

n
d

s)

Compution time vs state increase

Figure 5.15: Time complexity: left: mean time taken for a loop update (motion and
measurement) as a function of the number of states in a marginal and the
number of objects present. right: time taken for a loop update with respect
to the number of states in the marginal. The colour coded lines are associated
with the number of objects present. The computational cost is plotted on a
log scale. As the number of states increases exponentially the computational
cost matches it.

We conduct three different types of evaluation to quantify the scalability and

correctness of the scalable-MLMF filter. The first experiment tests the scala-

bility of our filter in terms of processing time taken per motion-measurement

update cycle. The second experiment evaluates the independence assumption

made in the scalable-MLMF filter between the objects. The third and final ex-

periment determines the effect of the memory size on a search policy to locate

all the objects in the Table world.

5.5.1 Evaluation of time complexity

We measured the time taken by the motion-measurement update loop, as

a function of the number beliefs and number of states per belief. We started

with a 100 states per belief and gradually increase it to 10’000’000 over 50

steps. Each of the 50 steps treated 2 to 25 objects. Figure 5.15 left illustrates

the computational cost as a function of number of states and objects. For

each state-object pair 100 motion-measurement updates were performed. Most

of the trials returned time updates below 1 Hz. Figure 5.15 right shows the

computational cost as a function of the number of states plotted for 6 different

filter runs with a different number of objects. As the number of states increases

exponentially so does the computational cost. Note the cost increases at the

same rate as the number of states meaning that the computational complexity

is linear with respect to the number of states. This result is in agreement with

the asymptotic time complexity.

5.5.2 Evaluation of the independence assumption

148

In section 5.4.4 we made the assumption (for scalability reasons) that the

objects’ beliefs are independent of one another. This assumption is validated by

comparing the MLMF filter on three random variables, an agent and two objects,

with the ground truth which we obtain from the standard histogram filter. For

each of the three beliefs (the agent and two objects), 100 different marginals

were generated and the true locations (actual position of the agent and objects)

were sampled. Figure 5.16 Top-left illustrates one instance of the initialisation

of the agent and object marginals with their associated sampled true position.

The agent carries out a sweep of the state space for each of the marginals and the

policy is saved and run with the scalable-MLMF filter. In the first experiment

we assumed that the objects are completely independent and that there was

no transfer of information between the pair-wise joint distributions. In the

second and third experiments there is an exchange of information as described

in Algorithm 4. Here we compare the effect of using the product of the agent’s

marginals, Equation 5.4.17, with the average of the marginals, Equation 5.4.18.

We expect the average of the the agent’s marginal to yield a result closer to the

ground truth as the marginal of the agent P (At|Y0:t, u1:t) at initialisation is the

same as the ground truth (the Histogram-SLAM’s). As for the marginal of the

objects P (O(i)|Y0:t) we expect the difference between them to be independent

of whether the product or average of the agent’s marginal is used. This results

from Algorithm 4. When an object i is sensed all the corresponding agent

marginals P (A(j)|u1:t) are set equal to P (A(i)|u1:t) and not to P (At|Y0:t, u1:t).

This is a design decision of our information transfer heuristic. There are many

other possibilities but this is one of the simplest. For each of the 100 sweeps the

ground truth is compared with the scalabe-MLMF using the Hellinger distance

(Equation 5.5.1)

H(P,Q) =
1√
2
‖
√
P −

√
Q‖2 (5.5.1)

which is a metric which measures the distance between two probability distribu-

tions. Its value lies strictly between 0 (the two distributions are identical) and

1 (no overlap between them). Figure 5.16 shows the kernel density distribution

of the Hellinger distances taken at each time step for all 100 sweeps. In the

Top-left of the figure, for the case when no transfer of information is a applied,

all the marginals are far from the ground truth. This results from the intro-

duction of the independence assumption, necessary to scale the MLMF. Figure

5.16 Bottom shows the results for difference between the product and average

of the agents marginals. As expected there is no difference between the objects’

marginals when considering both methods (product and average) with respect

to the ground truth. The predominant difference occurs in the agent’s marginal

P (At|Y0:t, u1:t). This is also expected and prompted the introduction of the

average method instead of the product.

The scalable-MLMF information exchange heuristic will not lead to any of

149

hellinger distance
60 80 100 120 140 160 180 200 220 240
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Li
ke

lih
oo

d

Initialisation

state space

hellinger distance

Policy

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Li
ke

lih
o
o
d

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Li
ke

lih
o
o
d

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Li
ke

lih
o
o
d

1) Objects considered independent

2) Product of agent marginals 3) Average of agent marginals

hellinger distance

Agent
Object #1
Object #2

Agent
Object #1
Object #2

Agent
Object #1
Object #2

Figure 5.16: Comparison of scalable-MLMF and the histogram filter A determinis-
tic sweep policy was carried out for 100 different initialisations of the agent and
object beliefs. Top left: One particular Initialisation of the agent and object
random variables. The true position of the agent and objects were sampled
at random. The black arrow indicates the general policy which was followed
for each of the 100 sweeps. These were performed for 1) scalable-MLMF
with objects considered to be independent at all times (no Algorithm 4). 2)

Agent marginal P (At|Y0:t, u1:t) is the product of marginals P (A
(i)
t |Y

(i)
0:t , u1:t),

Equation 5.4.17. 3) marginal P (At|Y0:t, u1:t) is taken to be the average of

all marginals P (A
(i)
t |Y

(i)
0:t , u1:t), Equation 5.4.18. For each of these three ex-

periment we report the kernel density estimation over the Hellinger distances
taken at every time step between ground truth (from histogram filter) and
scalable-MLMF.

the objects marginals probability mass being falsely removed during the infor-

mation transfer, which is close to a winner-take-all approach in terms of beliefs.

When object i is sensed its associated agent marginal is set to all other agent-

object joint pairs, which results in the information accumulated in the jth agent

marginals being replaced by the ith.

5.5.3 Evaluation of memory

The memory measurement likelihood function P (Y0:t|At, O, u1:t; Ψ0:t) is pa-

rameterised by the history of all the measurement likelihood functions which

have been applied on the joint distribution since initialisation. As detailed pre-

150

1

2

3

4

5

6

7

x10
−3

1

2

3

4

5

6

7

8
x10

−4

1

2

3

4

5

6

7

8

9
x10

−4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
−4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
−4

0 10 50 100

0.01

0.05

Agent's
positon

Object
positions

Wall

1

2

3

4

5

6

7

8

9
x10

−4

Figure 5.17: Agent’s prior beliefs. Two types of environment, the first is a 2D world
where the agent lives in a square surrounded by a wall whilst the second is
a 1D world. In the 2D figures the agent is illustrated by a circle with a bar
to indicate its heading. The true location of the objects are represented by
colour coded squares. Top row three different initialisations of the agent’s
location. Bottom row d) the agent’s prior beliefs with respect to the location
of the first object and e) belief of the second object’s location. bottom row f)
1D world with one object.

viously there can be no more than |Ψ0:t| ≤ N different measurement likelihood

functions added to memory. In the case of a very large state space this might

be cumbersome. We investigate how restricting the memory size, the number of

parameters |Ψ0:t|, can impact on the decision process in an Active-SLAM set-

ting. Given our set up a breadth-first search in the action space is chosen with

a one time step horizon, making it a greedy algorithm. The objective function

utilised is the information gain of the beliefs after applying an action, Equation

5.5.2.

ut = arg max
ut

H{P (At−1, O|Y0:t−1, u1:t−1)} − EYt
[H{P (At, O|Y0:t, u1:t)}]

(5.5.2)

For each action the filter is run forward in time and all future measurements

since we cannot know ahead of time the actual measurement. The information

gain is the difference between the current entropy (defined by H{·}) and the

future entropy after the simulated motion and measurement update. The action

with the highest information gain is subsequently selected. This is repeated at

each time step. Figure 5.17 illustrates the environment setup for a 1D and 2D

case. The agent’s task is to find the objects in the environment.

For the 2D search we consider three different initialisations (single-Gaussian,

151

four-Gaussian, Uniform) for the agent’s belief where there are two objects to be

found. Ten searches are carried out for each of the three initialisations of the

agent’s beliefs. The agent’s true location, for each search, is sampled from its

initial belief, and the objects’ locations (red and green squares in Figure 5.17)

are kept fixed throughout all searches. Each search is repeated for 18 different

memory sizes ranging from 1 to N (the number of states). For the 1D search

case one object is considered since adding more objects makes the search easier

and the interest lies in the memory effects of the search and not the search

itself. In Figures 5.18-5.19 we report on the time taken to find all objects with

respect to a given memory size which is shown as the percentage of the total

number of states. In the 1D search case the time variability taken to find the

object converges when the memory size is at 60% of the original state space.

As for the 2D search with 2 beliefs (agent & 1 object) the convergence depends

on the agent’s initial belief. For the 1-Gaussian (green line) all searches take

approximately the same amount of time after a memory size of 9%. As for the

remaining two initialisations convergence is achieved at 48%. The same holds

true for the case of 3 beliefs (agent & 2 objects).

In the 2D searches, the memory size has a less impact on the time taken to

find the objects than in the 1D (which is a special search case). Only when the

memory size is less than 6% is there a significant change. We conclude that at

least in the case of the greedy one step-look ahead planner which is frequently

used in the literature, the size of the memory seems not to be a limiting factor

in terms of the time taken to accomplish the search.

152

0

100

200

300

400

500

600

Ti
m

e
(#

st
ep

s
to

re
ac

h
go

al
)

memory size (%)
0.01 0.05 0.15 0.25 0.35 0.5 0.7 0.9 1

convergence

full sweep

Figure 5.18: Memory size vs time to find object in 1D Results of the effect of the
memory size on the decision process for the 1D search illustrated in Figure
5.17 f). The memory size is reported as the percentage of total number of
states present in the marginal space. At 100% the size of the memory is equal
to that of the state space, N = 100 in this case. A total sweep of the entire
state space would result in a total of 200 steps, the dotted grey line in the
above figure. When no restrictions are placed on the memory size the policy
following the greedy approach takes around 180 steps. This result converges
when the number of parameters |Ψ0:t| of the memory likelihood function is
greater than 50% of the original state space.

memory size (%)
0 0.03 0.06 0.09 0.16 0.32 0.48 0.64 0.8 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ti
m

e
(#

st
ep

s
to

re
ac

h
go

al
)

memory size (%)
0 0.03 0.06 0.09 0.16 0.32 0.48 0.64 0.8 1

0

500

1000

1500

2000

2500

Ti
m

e
(#

st
ep

s
to

re
ac

h
go

al
)

Figure 5.19: Memory size vs time to find objects in 2D. The initial beliefs correspond
to those of Figure 5.17, a) for Gaussian (green line), b) 4 Gaussians (red line)
and c) Uniform (blue line), both objects are initialised according to d) and
e).

153

5.6 Conclusion

This work addresses the Active-SLAM filtering problem for scenarios in

which sensory information relating to the map is very limited. Current SLAM

algorithms filter the errors originating from sensory measurements and not prior

uncertainty. By making the assumption that the joint distribution of all the ran-

dom variables is a multivariate Gaussian, inference is tractable. Since the origin

of the uncertainty does not originate from the measurement noise, no assump-

tion can be made about the structure of the joint distribution. In this case a

suitable filter would be the histogram which makes no assumption about the

shape or form taken by the joint distribution. However, the space and time

complexity are exponential with respect to the number random variables and

this is a major limiting factor for scalability.

The main contribution of this work is a formulation of a histogram Bayesian

state space estimator in which the computational complexity is both linear in

time and space. A different approach to other SLAM formulations as been

taken in the sense that the joint distribution is not explicitly parameterised

avoiding the exponential increase in parameter space which would otherwise

have been the case. The MLMF parameters consist of the marginals and the

history of measurement functions which have been applied. By solely evaluating

the joint distribution at the states which are affected by the current measure-

ment function whilst taking into account the memory, the MLMF filter obtains

the same filtered marginals as the histogram filter. Further, the worst case space

complexity is linear rather than exponential and the time complexity remains

exponential but increases at lower rate than in the histogram filter. In striving

to make the filter scalable we make the assumption that the objects are inde-

pendent. An individual MLMF is used for each agent-object pair. We evaluate

the difference between the scalable-MLMF with a ground truth provided by the

histogram filter for 100 different searches with respect to the Hellinger distance.

We conclude that the divergence is relatively small and thus the scalable-MLMF

filter provides a good approximation to the true filtered marginals. We evaluate

the time taken to perform a motion-update loop for different discretisations of

the state space (100 to 10’000’000 states) and number of objects (2 to 25). In

most of the cases we achieve an update cycle rate below 1Hz. We evaluate how

the increase of the number of states effects the computational cost and find the

relationship to be linear and thus in agreement with our analysis of the asymp-

totic growth rate. We analyse the effect of the memory size (the remembered

number of measurement likelihood functions) on the decision theoretic process

of reducing the uncertainty of the map and agent during a search task. We con-

clude that in the 2D case the memory size has much less effect than in the 1D

case and that it is unnecessary to remember every single measurement function.

This implies that the MLMF and scalable-MLMF that we have are a com-

154

putationally tractable means of performing SLAM in a case scenario in which

mostly negative information is present and the joint distribution cannot be as-

sumed to have any specific structure. Furthermore, the filter can be used at a

higher cognitive level than the processing of raw sensory information as is often

the case in Active-SLAM. MLMF would be well suited for reasoning tasks where

the robot’s field of view is limited.

An interesting future extension could be to make the original MLMF fil-

ter scalable without introducing assumptions. One possibility could to be to

consider Monte Carlo integration methods for inference. These can scale well

to high dimensional spaces whilst still providing reliable estimates. A second

possibility could be to investigate the use of Gaussian Mixtures as a form of pa-

rameterisation of the marginals to blend our filter with EKF-SLAM. This would

allow the parameters to grow quadratically with respect to the dimension of the

marginal space as opposed to exponentially as is the case with the histogram

and MLMF filters.

155

156

Chapter 6

Conclusion and summary

This Chapter highlights the contributions, limitations and personal insights of

the author in this thesis and proposes possible directions for future research.

6.1 Main Contributions

This thesis specifically addressed decision making by agents under uncer-

tainty. In the field of Robotics and Artificial Intelligence (AI), considering un-

certainty in search policies is not straightforward. This is due to the complexity

involved in solving Partially Observable Markov Decision Processes (POMDP),

commonly used to describe uncertainty in tasks, which become quickly infeasible

for even the simplest problems. Although there has been progress in the devel-

opment of POMDP solvers with demonstrated applications to robotics, these

are predominantly verified in simulation where the action space is discretised.

This thesis offers an approach to solving POMDP problems with continuous

action space and high levels of uncertainty which are non-Gaussian. To tackle

the sheer complexity yielded by a continuous space we used human demonstra-

tions to provide a set of behaviours which are encoded in a generative model used

as a policy. This thesis provides three major contributions to current research

which we summarise below.

Firstly, we demonstrate a Programming by Demonstration POMDP frame-

work (PbD-POMDP) to learn a mixture of search strategies from human teach-

ers. This method allowed to extract multiple search strategies from a group

of human teachers. The behaviour in question was predominantly risk-averse

when compared to a myopic greedy policy. Even when the human subjects

where localised they would keep close to salient features whilst “en route” to

the goal. The Gaussian Mixture Model (GMM) policy of the belief-state action

space allowed to encode the main behaviours in a continuous POMDP policy

avoiding the discretisation of actions, states and time. The PbD-POMDP was

able to outperform both myopic and coastal navigation algorithms thus demon-

strating the usefulness of the human teachers’ foresight and how to leverage it

in a POMDP policy avoiding the costly uninformed exploration methods tradi-

tionally used to solve POMDP problems.

Secondly, we propose a Reinforcement Learning (RL) extension in which

157

the task is explicitly described by a binary reward function. By combining

the reward function and the explorative-exploitative data, provided by human

teachers, in a fitted actor-critic RL framework a significantly improved policy

can be obtained after one iteration of policy evaluation and improvement. This

mitigates the need of time consuming rollouts which is the traditional bottleneck

in RL. We bring a modified version of the EM algorithm (Q-EM) which weights

individual demonstration data points by either the Q or advantage function.

This approach allows to take into account the quality of the demonstrations,

which was not the case in the PbD-POMDP approach. We demonstrated that

when solely the worst two teachers’ data was used, our RL method, RL-PbD-

POMDP, outperformed our previous PbD-POMDP approach at a peg-in-hole

task.

Thirdly, we bring a Bayesian State Space Estimator (BSSE), which we name

Measurement Likelihood Memory Filter (MLMF), to solve the Simultaneous

Localisation and Mapping (SLAM) problem where only haptic information is

available. This filter does not make any assumptions on the structure of the

beliefs, they don’t need to be Gaussian (EKF-SLAM). The MLMF is parame-

terised by the function parameters of the likelihood functions as oppose to their

values as it is the case for Histogram-SLAM. We demonstrate that the MLMF

is able to overcome the inherent exponential space and time complexity present

in its Histogram counterpart. To the best of our knoweldge this is the first work

which considers mostly negative information in a SLAM setting.

6.2 Limitations and Future Work

We summarise the current perceived limitations of our work and discuss

different approaches to resolving them.

Gaussian Mixture Controller

Throughout this dissertation, we used Gaussian Mixture Models (GMM) to

encode a vector field policy which is a function of the current belief state. For the

robot to be able to localise itself the policy has to be guided towards salient areas

of the state space, such as edges and corners. However, as the GMM learning

is non-deterministic and data driven, there are no guarantees that behaviour

such as remaining in contact with edges in order to get haptic feedback will be

encoded and reproduced by the GMM policy.

It would require only one poorly demonstrated trajectory which failed to

establish a contact with an edge, for the vector field to be shifted resulting

in a policy which fails to establish contact with the environment. Figure 6.1

illustrates an example of this drawback.

A solution would be to design a cost function which gives more importance

to data points which are close to salient features, such as edges and corners.

158

demonstrations plugGaussian

wall contact

no contact

bad demonstration

Figure 6.1: GMM policy drawback. Top: Two demonstrations, blue trajectories, follow a
path which when fitted with a GMM (one Gaussian component is drawn in
green) results in a vector which keeps the plug in contact with the edge of the
wall. Bottom: A third demonstration, red line, did not result in a contact with
the edge of the wall. The Gaussian of the GMM is shifted to the mean point of
the data. The GMM policy no longer keeps the plug in contact with the edge.

As a result, the components of the problematic red trajectory in Figure 6.1

are excluded during the learning. This can be integrated into the Actor-Critic

Reinforcement Learning (RL) framework used in Chapter 4, for the peg-in-hole

task.

RL is an off-line approach (in the sense that many rollouts are needed to

achieve the desired behaviour) which can be used to select behaviour which

will result in a policy remaining in contact with the environment. However,

if the geometry of the environment was to change by less than a centimetre

the same situation would occur (failure to remain in contact) and GMM policy

parameters would have to be relearned through either new demonstrations or

via autonomous exploration.

In the peg-in-hole task described in Chapter 4, in order to enforce a constant

contact with the environment, a hybrid force/position controller was used which

disregarded the velocity component orthonormal to the wall. The remaining two

velocity components where obtained from the GMM policy and modulated by

a heuristic function to surmount the edges of the plug.

The main problem arises however during the execution of the GMM policy

when no sensory feedback constraints are resolved. Belief space planners (re-

viewed in Chapter 2) are approaches which take into consideration variations

in the environment and which can produce trajectories which actively seek sen-

sory feedback. These planners solve an objective function online, with contact

constraints Vien and Toussaint (2015b). Such online belief space planners are

computationally expensive and require simulation of dynamics and sensory feed-

back in order to find an appropriate set of actions. A dynamic system approach,

such as the GMM policy, learns the sensory-control mapping directly making it

159

computationally cheap at runtime.

Future research could consider local adaptation of the dynamical system in

order to try and seek out specific sensory feedback. This could be achieved for

instance by combining planning with GMM policies or learning local dynamical

systems which seek out sensory feedback. The difficulty lies in combining their

joint actions.

Belief compression

Throughout this research, the belief is represented by a probability density

function and the GMM policy is learned from a dataset with a fixed number

of dimensions, which is seven in our case (3 for velocity, 3 for the most likely

state and 1 for entropy). The compression of the belief to a belief state vector

results in loss of information which weakens the Markov assumption. There exist

however other compression methods, such as E-PCA Roy and Gordon (2003b).

This is a non-linear dimensionality reduction technique which retrieves a set of

basis probability distributions in order to minimise the reconstruction Kullback-

Leibler (KL) divergence.

However, such compression methods require a discretisation of the probabil-

ity density function and then its projection to a latent space, which in the case

of E-PCA, requires solving an convex optimisation problem (iterative Newton’s

method) at each time step.

Furthermore, it is also not clear what effect an improved belief compression

method would have on the policy. The better the compression method (in terms

of KL divergence) the more dimensions are necessary and as a result more data

points will be required to train the GMM. We make the observation in both

Chapter 3 and Chapter 4 that the GMM policy is better than a myopic policy.

However, this holds true only when a large amount of uncertainty is present.

When the uncertainty starts to decrease the Greedy method performs just as

well or even better than a four dimensional belief state GMM. As such, it is

not clear that a more sophisticated belief compression method for the tasks we

consider would be an improvement.

Policy representation

We learned the belief space policies in task space (Cartesian position in the

world’s frame of reference). This choice entails two difficulties: the number of

parameters needed to encode the task and generalisation.

As there is much variance in the demonstrated search behaviour (at the

raw trajectory level) many parameters are necessary to encode the policy. The

policies learned for the search tasks in this thesis required around 90 Gaussian

functions of dimension 7. This is a considerable number of parameters consid-

160

ering the simplicity of the task (find the the table/wall, navigate to an edge,

reach the goal). Typically more parameters also entail a poor generalisation.

Future work could be directed towards learning a high-level policy composed

of parameterised behaviour policies which are easily re-usable. Such policies

could be parameterised by sub-goals and contact constraints which could be

extracted by segmenting the original demonstrations.

MLMF

The Measurement Likelihood Memory Filter (MLMF), introduced in Chapter

5, is based on the assumption of a sparse likelihood function where mostly

zero measurements are present. This by itself is not a weakness, but a necessary

assumption to achieve a linear space complexity. As the time complexity remains

exponential with respect to the number of objects (although at a lesser growth

rate) we were obliged to introduce an additional independence assumption. This

assumption implies that some information will be lost and the filtered marginals

will be an approximate solution with respect to an optimal Bayesian filter.

There is no obvious remedy to this problem. There are two approaches: either

introduce an assumption (as we did) or perform an approximate evaluation

of the marginalisation. An approximate marginalisation could be achieved by

evaluating the value of the marginals at specific points and setting the remaining

marginal values by interpolation.

6.3 Final Words

During my PhD I have spent a considerable amount of time studying the

role of uncertainty in Artificial Intelligence, specifically how it affects decision

making in agents. I list below some points of interest and important insights.

• Humans can be poor teachers: Programming by Demonstration (PbD),

traditionally requires an expert teacher to provide a set of demonstrations

in the form of state-velocity pairs which are used to learn a policy rep-

resented by a regressor function. If the teacher is rarely successful at his

task, learning a policy directly from his behaviour will yield a policy on

par with the teachers performance. One of the original questions posed by

PbD is what to imitate ?, Billard et al. (2008). By introducing a simple

binary cost function, as shown in Chapter 4, we were able to improve the

quality of the policy. All regression based PbD methods can use the Rein-

forcement Learning (RL) approach used in Chapter 4, with no additional

rollouts being necessary.

• Reinforcement Learning can be easy (continuous state and action space):

RL is notable for needing lengthy simulations and episodes to be successful,

which typically result in a complete exploration of the entire state (or

161

parameter) space for tasks such as the inverted-pendulum or mountain

cart. This is infeasible for learning a complicated continuous state and

action space policy with a long time horizon.

In using RL during both my PhD and Master Thesis, there was always

some magic required to get RL to work, such as choosing an appropriate

learning rate of the value function and decay rate of the exploration noise,

in order to get past local minimas.

There are two factors which make RL difficult to use: the exploration-

exploitation dilemma and the non-stationarity of the value function approx-

imator during on-line learning. To alleviate the exploration-exploitation

problem one can use human demonstrations in which an optimal set of

state-action pairs hopefully exists. The non-stationarity of the target value

function can be achieved through batch methods, also known as fitted RL

methods, which keep all data witnessed during episodes and learn the value

function off-line through approximate dynamic programming. Learning the

value function online at each time step can lead to divergence if an appro-

priate function approximator is not chosen (Szepesvári, 2010, p. 51). Given

the current memory capacity of modern computers the fitted RL off-line

methods seem more appropriate since the RL problem becomes a familiar

regression problem for which many algorithms are applicable.

By using a fitted off-line approach to learn a value function in combination

with a separate parameterisation of the policy in an Actor-Critic frame-

work, it is again feasible to use simple reward functions which can result

in significant improvements in the policy, as shown in Chapter 4.

162

Appendices

163

Appendix A

Peg in hole

A.1 Time to connect socket

We aim to test if there is any significant difference in time taken to connect

socket A and B. We hypothesised that socket A requires longer time than socket

B.

Data from two groups of 5 subjects where collected according the the exper-

iment protocol. All subjects had time to familiarise themselves with the task

and accomplished multiple training rounds before the start of the experiment.

In Figure A.3 (Top row) we plot the time taken for each subject to connect the

plug to the socket, once the socket was localised.

Before applying a statistical test to compare the time taken to connect the

plug to the sockets for the two groups, we tested the normality of the time-

distribution of each experiment condition (AA, AB, BA, BB).

We applied Shapiro-Wilk test of normality in R and used Q-Q plots to com-

pare the shapes of distributions (Figure A.2) with normality. None of the time-

distributions of the experimental conditions are normal (p< 0.0001). Therefore,

we chose a non-parametric test to compare the distributions. Since socket A

and B were performed by related samples we applied the Wilcoxon signed-rank

test (a paired difference test). This test assesses whether the population mean

rank differs between the two sockets (A and B) given that a subject performed

both experiments one after the other.

Socket A took significantly longer time than socket B and this result was

observed in the two groups (Group A p<0.0001, Group B p=0.0002, Wilcoxon

signed-rank test, Figure A.3).

In summary, we observe that there is a significant effect of order. Starting

with socket B greatly reduced the time taken for socket A (p=0.02). Regardless

of the socket type between groups, the first socket always takes longer. For AA

vs BA, AA is significantly longer (p=0.02, Wilcoxon rank sum test). For socket

B, BB vs AB, BB takes significantly longer time (p<0.0001).

165

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure A.1: Time taken to find and connect the plug to the power socket. Top: Time taken
to connect the plug to the socket once the socket is localised. For most subjects
the median value of the taken time is higher for socket A when compared with
socket B. Bottom: time taken to localise the socket. For the second search,
AB and BA, it seams that the subjects are faster indicating learning during
the experiment.

166

Figure A.2: Q-Q plots of time taken for four experiment conditions. The above p-values
are from the Shapiro-Wilk test.

Figure A.3: Time taken to connect the sockets. For both groups, socket A always takes
significantly longer time to connect, For Group A p<0.0001 and for Group B
p=0.0002.

167

A.2 EM policy search

The objective of policy search in Reinforcement Learning (RL) is to optimise

the parameters of a policy πθ (which is a Gaussian Mixture Model (GMM) in

our case) such to maximise a cost function, J(θ) Equation A.2.1, defined over

the parameters of the policy:

J(θ) =

Epθ
{R}︷ ︸︸ ︷

N∑
i=1

T [i]∏
t=0

πθ(ẋ
[i]
t , b

[i]
t)


︸ ︷︷ ︸

pθ(τi)

R(τi) (A.2.1)

where τi = {(ẋ0, b0), · · · , (ẋ[i]
T , b

[i]
T)} are the state-action samples of the ith

episode. The total reward of one episode is the sum of discounted rewards:

R(τi) =

T[i]∑
t=0

γt r(b
[i]
t , ẋ

[i]
t) (A.2.2)

where γ ∈ [0, 1) is the discount factor which dictates how much future re-

wards are considered important at the current decision point. Most policy search

methods are based gradient ascent on the cost function:

θnew = θ + α∇θJ(θ) (A.2.3)

The drawback of policy gradient methods is that a learning rate, α, needs

to be specified and the optimisation strongly depends on the fine tuning of this

value. An alternative, which avoids the learning rate problem, are Expectation-

Maximisation (EM) methods. As our policy is a Gaussian Mixture Model

(GMM) we can take advantage of the already existing EM updates of the GMM

which are well known. Also updating the covariance parameters of the GMM

by gradient ascent can lead to problems such the covariances being no longer

positive-definite and this resolution requires the addition of constraints which

becomes cumbersome. In contrast the EM solution for the GMM case is simple

and easy to implement.

EM policy search methods have two phases. The first phase consists of

generating a set of episodes τ from the policy, this is the E-step. The second

step consists of finding a new parameter θnew of the policy by maximising the

cost function given the episodes:

θnew = argmax
θ

J(θ) (A.2.4)

The above optimisation can be solved through the same approach taken in

EM which consists of maximising the the logarithmic lower bound of the cost

function J(θ):

168

log(J(θ)) = log

N∑
i=1

pθ(τi)

pθ′(τi)
pθ′(τi)R(τi)

≥
N∑
i=1

log

(
pθ(τi)

pθ′(τi)

)
pθ′(τi)R(τi)︸ ︷︷ ︸

Q(θ,θ′)

(A.2.5)

The parameter θ′ belongs to the policy used to generate the episodes in the

E-step and the parameter θ is the one we are optimising for. The lower bound

Q(θ,θ′) is derived from Jensen’s inequality. The lower bound is next maximised

by taking its derivative ∇θQ(θ,θ′) = 0.

∇θQ(θ,θ′) =

N∑
i=1

∇θ log
(
pθ(τi)

)
pθ′(τi)R(τi)−

∇θ log
(
pθ′(τi)

)︸ ︷︷ ︸
=0

pθ′(τi)R(τi) (A.2.6)

∇θQ(θ,θ′) = Epθ′
{
∇θ log

(
pθ(τi)

)
R(τi)

}
(A.2.7)

=

N∑
i=1

T [i]∑
t=0

∇θ log
(
πθ(ẋ

[i]
t , b

[i]
t)
)
R(τi) (A.2.8)

=

N∑
i=1

T [i]∑
t=0

∇θ log πθ(ẋ
[i]
t , b

[i]
t)Qπθ′ (ẋ

[i]
t , b

[i]
t) (A.2.9)

From A.2.7 to A.2.8 we used the property: log(
∏
πθ) =

∑
log(πθ) and the

expectation vanishes as we evaluated it through sampling from the policy πθ′

(E-step). From A.2.8 to A.2.9 we used the fact that previous discounted rewards

do not dependent on future time steps. The reader is referred to (Deisenroth

et al., 2013, p. 50) for more details regarding Expectation-Maximisation and

policy search in reinforcement learning. In the next section A.3 we maximise

A.2.9 for the case when the policy is parameterised by a GMM.

A.3 Q-EM for GMM

We derive the EM update rules of the lower bound Q(θ,θ′) for a policy

πθ(ẋ, b) parameterised by a Gaussian Mixture Model which we call Q-EM. Below

we redefine the GMM function for convenience:

πθ(ẋ, b) =

K∑
k=1

w[k] g(ẋ, b;µ[k],Σ[k]) (A.3.1)

169

The parameters θ = {w[k],µ[k],Σ[k]}1,...,K , are the weights, means and co-

variances of the individual Gaussian functions, g(·).

Finding the new parameters of the GMM given a cost function J(θ) consists

of maximising its logarithmic lower bound, Equation A.3.2:

∇θQ(θ,θ′) =

N∑
i=1

T [i]∑
t=0

∇θ log πθ(ẋ
[i]
t , b

[i]
t)Qπθ′ (ẋ

[i]
t , b

[i]
t) (A.3.2)

As the ordering of the episode samples in the above equation does not mater

we concatenate all the episodes into one dataset D and the jth sample in this

dataset is given by x[j] = [ẋ[j], b[j]]T.

∇θQ(θ,θ′) =

M∑
j=1

∇θ log πθ(x[j])Qπθ′ (x[j]) (A.3.3)

To maximise Equation A.3.3 we take the derivatives with respect to the param-

eters θ = {w,µ,Σ} of the GMM. The reader my notice that the above equation

is the derivative of the log-likelihood of the dataset D weighted by Qπθ′ , a con-

stant scalar value. As a consequence the result of maximisation will be similar

to the standard EM solution of the GMM with an additional weighting factor.

For a reference on the derivative of the log-likelihood of a GMM the reader is

referred to (Petersen and Pedersen, 2012, p. 49) or (Bishop, 2006, Chap. 9).

Q-EM maximisation

∇µ[k]Q(µ[k],θ′) =

M∑
j=1

w[k] g(x[j];µ[k],Σ[k])
M∑
l=1

w[l] g(x;µ[l],Σ[l])︸ ︷︷ ︸
γk(x[j])

Σ[k]−1

(x[j] − µ[k])Qπθ′ (x[j]) = 0 (A.3.4)

In A.3.4 we used the same notation and derivation as in (Bishop, 2006, Chap.

9.2.2), where γk(x[j]) is the responsibility factor, denoting the probability that

data point x[j] belongs to Gaussian function k. After rearrangement the new

mean is given by Equation A.3.5.

170

µ[k]
new =

M∑
j=1

γk(x[j])Qπθ′ (x[j]) x[j]

M∑
j=1

γk(x[j])Qπθ′ (x[j])

Σ[k]
new =

M∑
j=1

γk(x[j])Qπθ′ (x[j])(x[j] − µ[k])(x[j] − µ[k])T

M∑
j=1

γk(x[j])Qπθ′ (x[j])

w[k]
new =

M∑
j=1

Qπθ′ (x[j]) γk(x[j])

M∑
j=1

Qπθ′ (x[j])

(A.3.5)

(A.3.6)

(A.3.7)

The covariances, Equation A.3.6, and weights, Equation A.3.7, are derived

in a similar fashion.

A.4 Unbiased estimator

The temporal difference error is an unbiased estimate of the advantage func-

tion:

E
πθ

{δπt |bt, ut} = E
πθ

{rt+1 + γV π(bt+1)|bt, ut} − V π(bt)

= Qπ(bt, ut)− V π(bt)

= Aπ(bt, ut) (A.4.1)

171

172

Appendix B

Non-parametric Bayesian
State Space Estimator

B.1 Probabilities

There are two rules extensively used in the derivation of a Bayesian filter

recursion regardless of the chosen parameterisation. Although well known we

restate them here for convenience.

• Chain rule

P (XM , · · · , X1) = P (XM |XM−1, · · · , X1)P (XM−1, · · · , X1) (B.1.1)

• Conditional independence

P (A,B|C) = P (A|��B,C)P (B|C)

= P (A|C)P (B|C) (B.1.2)

A and B are independent given that C is known.

B.2 Bayesian filtering recursion

Joint distribution

The joint distribution is over all the random variables since t = 0 until the

current time step t:

P (A0:t, O, Y0:t|u1:t) =

P (A0)P (O)P (Y0|A0, O)

t∏
t=1

P (At|At−1, ut)P (Yt|At, O) (B.2.1)

P (A0)P (O)P (Y0|A0, O)P (A1:t|u1:t)P (Y1:t|A1:t, O) (B.2.2)

P (A0)P (O)P (A1:t|u1:t)P (Y0:t|A0:t, O) (B.2.3)

From Equation B.2.1 to B.2.2 we made use of the chain rule of probabilities

173

(Equation B.1.1) and the conditional independence At+1 ⊥⊥ At−1|At, see below

a more concrete example for P (A0:3|u1:3):

P (A3, A2, A1, A0|u1:3) =

P (A3|A2,��A1 ,��A0 , u1:3)P (A2|A1,��A0 , u1:3)P (A1|A0, u1:3)P (A0|u1:3) = (B.2.4)

P (A3|A2, u3,��u1:2)P (A2|A1, u2,��u1,3)P (A1|A0, u1,��u2:3)P (A0|��u1:3) = (B.2.5)

(A3|A2, u3)P (A2|A1, u2)P (A1|A0, u1)︸ ︷︷ ︸
P (A1:3|u1:3)

P (A0) (B.2.6)

We applied the chain rule to get Equation B.2.4 and the cancellations arise

from conditional independence between the agent random variable At specified

by the BN, see Figure 5.3 on page 123. The cancellations on line B.2.5 arise

also from BN, At only depends on ut and no previous actions.

To see clearer the relationship between the left and right hand side of Equa-

tion B.2.3, we can again apply the chain rule to the right, which gives:

P (A0:t, O, Y0:t|u1:t) = P (Y0:t|A0:t, O,��u1:t)P (A0:t, O|u1:t) (B.2.7)

= P (Y0:t|A0:t, O)P (A0:t, O|u1:t) (B.2.8)

The measurements Y0:t are independent of the actions u0:t given the history of

the agent’s random variables A0:t. Next we see the relation between the thirst

three terms on the right of Equation B.2.3 with P (A0:t, O|u1:t). We apply the

chain rule:

P (A0:t, O|u1:t) = P (A0:t|�O, u1:t)P (O|��u1:t) (B.2.9)

= P (A0)P (O)P (A1:t|u1:t) (B.2.10)

The object O is conditionally independent of the actions and the second of

actions A0:t are conditional independent of the object as they are dependent

only on the measurements.

Typically we are interested in the filtered joint distribution P (At, O, Y0:t|u1:t)

which is obtained by marginalising over A0:t−1:

P (At, O, Y0:t|u1:t) =
∑
A0:t−1

P (At, A0:t−1, O, Y0:t|u1:t) (B.2.11)

A recursion exists making it not necessary to sum over all agents random vari-

ables from the state time until then end, but instead we only have to consider

the last time step, see the next paragraph.

Filtering problem

We derive P (At, O, Y0:t|u1:t), we start from the joint distribution, Equation

174

B.2.12:

P (At, O, Y0:t|u1:t) =
∑
At−1

P (At, At−1, O, Yt, Y0:t−1|ut, u1:t−1) (B.2.12)

P (At, O, Y0:t|u1:t) =
∑
At−1

P (Yt|���Y0:t−1 , At,��
�At−1 , O,��ut ,���u1:t−1)

P (At|At−1,�O, ut,���Y0:t−1 ,���u1:t−1)

P (At−1, O, Y0:t−1|��ut , u1:t−1)

P (At, O, Y0:t|u1:t) (B.2.13)

=
∑
At−1

P (Yt|At, O)P (At|At−1, ut)P (At−1, O, Y0:t−1|u1:t−1)

= P (Yt|At, O)
∑
At−1

P (At|At−1, ut)P (At−1, O, Y0:t−1|u1:t−1)

︸ ︷︷ ︸
P (At,O,Y0:t−1|u1:t)

(B.2.14)

P (At, O, Y0:t|u1:t) = P (Yt|At, O)P (At, O, Y0:t−1|u1:t)

= P (Yt|At, O)P (At, O|Y0:t−1, u1:t)P (Y0:t−1|u1:t) (B.2.15)

All the cancellations come from the Markov Assumption read from the struc-

ture of the Bayesian network. The resulting final Bayesian recursion is obtained

by conditioning on the measurement and actions, which is the normalisation

factor.

P (At, O|Y0:t, u1:t) =
P (Yt|At, O)P (At, O|Y0:t−1, u1:t)P (Y0:t−1|u1:t)

P (Y0:t|u1:t)

=
P (Yt|At, O)P (At, O|Y0:t−1, u1:t)((((

(((P (Y0:t−1, u1:t)

P (Yt|Y0:t−1, u1:t)((((
(((P (Y0:t−1|u1:t)

(B.2.16)

P (At, O|Y0:t, u1:t) =
P (Yt|At, O)P (At, O|Y0:t−1, u1:t)

P (Yt|Y0:t−1, u1:t)
(B.2.17)

The evidence is the the integration of all terms which are not measurements

in the numerator of Equation B.2.17.

P (Yt|Y0:t−1, u1:t) =
∑
At

∑
O

P (Yt|At, O)P (At, O|Y0:t−1, u1:t) (B.2.18)

=
∑
At

∑
O

P (Yt, At, O|Y0:t−1, u1:t) (B.2.19)

This is very expensive since we have to sum over the entire joint distribution,

the MLMF avoids doing this by only considering the dependent regions of the

joint distribution.

175

B.3 Recursion example

Derivation of the filtered joint distribution, P (At, O, Yt|Y0:t, u1:t), for two

updates. At initialisation when no action has yet been taken the filtered joint

distribution is the product of the initial marginals and first likelihood function:

P (A0, O, Y0) = P (O)P (A0)P (Y0|A0, O) (B.3.1)

The a first action, u1 is applied, which to get the filtered joint distribution

is marginalised:

P (A1, O, Y0|u1) = P (O)
∑
A0

P (A1|A0, u1)P (A0)P (Y0|A0, O) (B.3.2)

= P (O)
∑
A0

P (A1, A0, Y0|u1, O) (B.3.3)

= P (O)P (A1, Y0|u1, O) (B.3.4)

= P (O)P (Y0|A1, O, u1)P (A1|u1,�O) (B.3.5)

= P (O)P (Y0|A1, O, u1)P (A1|u1) (B.3.6)

From Equation B.3.4 to B.3.5 we used the Chain rule B.1.1 and the cancellation

in Equation B.3.5 arise from the factorisation of the joint distribution, see Figure

5.3 on page 123, A’s marginal does not depend on O. After the application of

the first action, the filtered joint has the following form:

P (A1, O, Y0|u1) = P (O)P (A1|u1)P (Y0|A1, O, u1) (B.3.7)

A second measurement Y1 and action u2 are integrated into the filtered joint

distribution:

P (A2, O, Y0:1|u1:2) =

P (O)
∑
A1

P (A2|A1, u2)P (A1|u1)P (Y0|A1, O, u1)P (Y1|A1, O) =

P (O)
∑
A1

P (A2, A1|u1:2)P (Y0:1|A1, O, u1) =

P (O)
∑
A1

P (A2, A1, Y0:1|O, u1:2) =

P (O)P (A2, Y0:1|O, u1:2) = (B.3.8)

P (O)P (Y0:1|A2, O, u1:2)P (A2|�O, u1:2) (B.3.9)

We expand the function P (Y0:1|A2, O, u1:2) to give a sense of how the likelihood

function’s positions get as illustrated in Figure 5.7 on page 129.

176

P (Y0, Y1|A2, O, u1, u2) = P (Y0|��Y1 , A2, O, u1, u2)P (Y1|A2, O,��u1 , u2) (B.3.10)

= P (Y0|A2, O, u1:2)P (Y1|A2, O, u2) (B.3.11)

The first likelihood of measurement Y0 is dependent on the last to applied actions

whilst the likelihood of Y1 is dependent on the last action.

Repeating the above for Y2:t and u3:t results in:

P (At, O, Y0:t|u1:t) = P (O)P (At|u1:t)

t∏
i=0

P (Yi|At, O, ui+1:t) (B.3.12)

If t = 3, (Y0:3 and u1:3) according to the above equation we would get:

P (A3, O, Y0:3|u1:3) = P (O)P (A3|u1:3)P (Y0|A3, O, u1:3)

P (Y1|A3, O, u2:3)

P (Y2|A3, O, u3:3)

P (Y3|A3, O,��u4:3) (B.3.13)

We introduce some notation rules, first if (i+ 1) > t for u(i+1):t then it cancels

out since the current measurement Yt cannot depend on a future action u(i+1).

B.4 Derivation of the evidence

The evidence, also known as the marginal likelihood, is the marginalisation

of all non measurement random variables from the filtered joint distribution

P (At, O, Y0:t|u1:t). We detail below how we compute the evidence in a recursive

manner whilst only considering dependent regions of the joint distribution.

We start with the standard definition of the evidence:

P (Y0:t|u1:t) =
∑
At

∑
O

P (At, O, Y0:t|u1:t) ∈ R (B.4.1)

If both At and O are random variables defined over a discretised state space of N

states, the above double integral will sum a total of N2 states which is the com-

plete state space of the joint distribution P (At, O, Y0:t|u1:t) ∝ P (At, O|Y0:t, u1:t),

see Figure 5.9 on page 134 for an illustrate of such a joint distribution. As we are

interested in a recursive computation of the evidence, we consider the gradient:

αt = ∇Yt
P (Y0:t|u1:t) = P (Y0:t|u1:t)− P (Y0:t−1|u1:t) (B.4.2)

177

αt =
∑
At

∑
O

P (At, O, Y0:t|u1:t)− P (At, O, Y0:t−1|u1:t) (B.4.3)

=
∑
At

∑
O

P (Yt|At, O)P (At, O, Y0:t−1|u1:t)− P (At, O, Y0:t−1|u1:t) (B.4.4)

=
∑
At

∑
O

(P (Yt|At, O)− 1)P (At, O, Y0:t−1|u1:t) (B.4.5)

The gradient αt is the difference in mass before and after the application the

likelihood function, P (Yt|At, O). The above summation, Equation B.4.5, is over

the entire joint distribution state space. We can take advantage of the fact that

the likelihood function is sparse and will only affect a small region of the joint

distribution, which we called the dependent states, ∩. The states which are not

affected by the joint distribution will result in a contribution of zero to Equation

B.4.5. We rewrite the gradient update in terms of only the dependent regions:

αt =
∑
At

∑
O

(P (Yt|At, O)− 1)P∩(At, O, Y0:t−1|u1:t) (B.4.6)

Consider the first update of the evidence at time t = 0:

α0 =
∑
At

∑
O

(P (Y0|A0, O)− 1)P (A0, O) (B.4.7)

The one in Equation B.4.8 is the original value of the normalisation denominator

before any observation is made and as the initial joint distribution P (A0, O) is

normalised the value of the denominator is one.

P (Y0) = 1 + α0 (B.4.8)

For the evidence P (Y0:t|u1:t) we consider the summation of all the derivatives

αt from time t = 0 until t:

P (Y0:t|u1:t) = 1 +

t∑
t=0

αt (B.4.9)

B.5 Derivation of the marginal

The marginal of a random variable is the marginalisation or integration over

all other random variables, P (At, |Y0:t) =
∑
O

P (At, O|Y0:t). Below we give a

form of this integration which exploits the independent regions in the joint

distribution.

178

P (At, |Y0:t) = P(At|Y0:t−1)−
(
P(At|Y0:t−1)− P (At|Y0:t)

)
(B.5.1)

In Equation B.5.1 we add and substract P (At|Y0:t−1) and we further split

P (At|Y0:t−1) into independent and dependent components:

P (At, |Y0:t) = P (At|Y0:t−1)−(
P∩(At|Y0:t−1) +((((

(((P	(At|Y0:t−1)︸ ︷︷ ︸
P (At|Y0:t−1)

−P∩(At|Y0:t) +(((
(((P	(At|Y0:t)︸ ︷︷ ︸

P (At|Y0:t)

)
)

(B.5.2)

From equation B.5.2 to B.5.3 we used the fact that independent regions of the

marginal distributions will remain unchanged after an observation, P	(At|Y0:t−1) =

P	(At|Y0:t), and before re-normalisation. This results in the final recursive up-

date:

P (At, |Y0:t) = P (At|Y0:t−1)−
(
P∩(At|Y0:t−1)− P∩(At|Y0:t)

)
(B.5.3)

Equation B.5.3 states that only elements of the marginals which are dependent

will change by the difference before and after a measurement update.

179

180

References

Douglas Aberdeen and Jonathan Baxter. Scaling internal-state policy-gradient
methods for pomdps. In International Conference on Machine Learning
(ICML), pages 3–10, 2002. URL http://users.rsise.anu.edu.au/~daa/

files/papers/gradIstate-icml.pdf.

Fares Abu-Dakka, Bojan Nemec, Aljaz Kramberger, Anders Glent Buch, Nor-
bert Krüger, and Ales Ude. Solving peg-in-hole tasks by human demonstra-
tion and exception strategies. Industrial Robot, 41(6):575–584, 2014. doi:
http://dx.doi.org/10.1108/IR-07-2014-0363.

A. Agostini and E. Celaya. Reinforcement learning with a gaussian mixture
model. In The 2010 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, July 2010. doi: 10.1109/IJCNN.2010.5596306.

Ali akbar Agha-mohammadi, Suman Chakravorty, and Nancy M. Amato.
Firm: Feedback controller-based information-state roadmap - a framework
for motion planning under uncertainty. In International Conference on In-
telligent Robots and Systems (IROS), pages 4284–4291, Sept 2011. doi:
http://dx.doi.org/10.1109/IROS.2011.6095010.

Ali akbar Agha-mohammadi, S. Agarwal, A. Mahadevan, S. Chakravorty,
D. Tomkins, J. Denny, and N. M. Amato. Robust online belief space planning
in changing environments: Application to physical mobile robots. In Interna-
tional Conference on Robotics and Automation (ICRA), pages 149–156, May
2014. doi: http://dx.doi.org/10.1109/ICRA.2014.6906602.

M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transac-
tions on Signal Processing, 50(2):174–188, February 2002a.

M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. Transactions on
Signal Processing, 50(2):174–188, Feb 2002b. ISSN 1053-587X. doi: 10.1109/
78.978374.

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally
weighted learning. ARTIFICIAL INTELLIGENCE REVIEW, pages 11–73,
1997. doi: http://dx.doi.org/10.1023/A:1006559212014.

Chris Bake, Joshua. Tenenbaum, and Rebecca Saxe. Bayesian models of human
action understanding. NIPS, 2006.

Chris Bake, Joshua. Tenenbaum, and Rebecca Saxe. Bayesian theory of mind:
Modeling joint belief-desire attribution. Journal of Cognitive Science, 2011.

D. Barber. Bayesian Reasoning and Machine Learning. 2012.

181

http://users.rsise.anu.edu.au/~daa/files/papers/gradIstate-icml.pdf
http://users.rsise.anu.edu.au/~daa/files/papers/gradIstate-icml.pdf

Simon Baron-Cohen. Mindblindness. 1995.

Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in pomdp’s
via direct gradient ascent. In International Conference on Machine Learning
(ICLM), pages 41–48. Morgan Kaufmann, 2000.

M. Bdiwi, A. Winkler, M. Jokesch, and J. Suchy. Improved peg-in-hole (5-pin
plug) task: Intended for charging electric vehicles by robot system automat-
ically. In International Multi-Conference on Systems, Signals and Devices,
2015.

Niclas Bergman and C Niclas Bergman. Recursive bayesian estimation: Navi-
gation and tracking applications. thesis no 579. Technical report, Linköping
University, Linköping Studies in Science and Technology. Doctoral disserta-
tion, 1999.

D. Bernoulli. Exposition of a New Theory on the Measurement of Risk (1748).
Econometrica, 22(1):23–36, 1954.

A. Billard and D. Grollman. Robot learning by demonstration. Scholarpedia, 8
(12):3824, 2013.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by
demonstration. In Handbook of Robotics, pages 1371–1394. 2008.

Christopher M. Bishop. Pattern Recognition and Machine Learning. 2006. URL
http://research.microsoft.com/en-us/um/people/cmbishop/prml/.

H. Bou-Ammar, H. Voos, and W. Ertel. Controller design for quadrotor uavs
using reinforcement learning. In International Conference on Control Appli-
cations, pages 2130–2135, Sept 2010. doi: 10.1109/CCA.2010.5611206.

Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learn-
ing: Safely approximating the value function. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 7, pages 369–376. MIT Press,
1995.

Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Solving continuous
pomdps: Value iteration with incremental learning of an efficient space rep-
resentation. In International Conference on Machine Learning (ICML), vol-
ume 28, pages 370–378. JMLR Workshop and Conference Proceedings, May
2013. URL http://jmlr.org/proceedings/papers/v28/brechtel13.pdf.

Alex Brooks and Stefan Williams. A monte carlo update for parametric pomdps.
In Robotics Research, volume 66, pages 213–223. 2011. doi: http://dx.doi.org/
10.1007/978-3-642-14743-2 19.

Neil Burgess. Spatial memory: how egocentric and allocentric combine. Trends
in Cognitive Sciences, 10(12):551 – 557, 2006. ISSN 1364-6613. doi: http:
//dx.doi.org/10.1016/j.tics.2006.10.005. URL http://www.sciencedirect.

com/science/article/pii/S1364661306002713.

L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska. Approximate rein-
forcement learning: An overview. In Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning (ADPRL), pages 1–8, April 2011. doi:
10.1109/ADPRL.2011.5967353.

182

http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://jmlr.org/proceedings/papers/v28/brechtel13.pdf
http://www.sciencedirect.com/science/article/pii/S1364661306002713
http://www.sciencedirect.com/science/article/pii/S1364661306002713

J. Butterfield, O. C. Jenkins, D. Sobel, and J. Schwertfeger. Modeling aspects of
Theory of Mind with Markov Random Fields. International Journal of Social
Robotics, 1(1):41–51, January 2009.

S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard. Learn-
ing and reproduction of gestures by imitation. IEEE Robotics Automation
Magazine, 17(2):44–54, jun 2010. doi: http://dx.doi.org/10.1109/MRA.2010.
936947.

L. Carlone, Jingjing Du, M.K. Ng, B. Bona, and M. Indri. An application of
kullback-leibler divergence to active slam and exploration with particle filters.
In International Conference on Intelligent Robots and Systems (IROS), pages
287–293, Oct 2010. doi: http://dx.doi.org/10.1109/IROS.2010.5652164.

H. Carrillo, I Reid, and J.A Castellanos. On the comparison of uncertainty crite-
ria for active slam. In International Conference on Robotics and Automation
(ICRA), pages 2080–2087, May 2012. doi: http://dx.doi.org/10.1109/ICRA.
2012.6224890.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty:
discrete bayesian models for mobile-robot navigation. In International Con-
ference on Intelligent Robots and Systems (IROS), volume 2, pages 963–972
vol.2, Nov 1996.

Guillaume de Chambrier and Aude Billard. Learning search policies from hu-
mans in a partially observable context. Robotics and Biomimetics, 1(1):1–16,
2014. doi: http://dx.doi.org/10.1186/s40638-014-0008-1.

D. Chen and G. von Wichert. An uncertainty-aware precision grasping process
for objects with unknown dimensions. In International Conference on Robotics
and Automation (ICRA), pages 4312–4317, May 2015. doi: http://dx.doi.org/
10.1109/ICRA.2015.7139794.

H. Cheng and H. Chen. Online parameter optimization in robotic force
controlled assembly processes. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 3465–3470, may 2014. doi: http:
//dx.doi.org/10.1109/ICRA.2014.6907358.

S. R. Chhatpar and M. S. Branicky. Search strategies for peg-in-hole assemblies
with position uncertainty. In International Conference on Intelligent Robots
and Systems (ICRA), volume 3, pages 1465–1470 vol.3, 2001. doi: http:
//dx.doi.org/10.1109/IROS.2001.977187.

G. de Chambrier and A. Billard. Learning search behaviour from humans. In
Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference
on, pages 573–580, Dec 2013. doi: http://dx.doi.org/10.1109/ROBIO.2013.
6739521.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2011.
doi: 10.1561/2300000021. URL http://dx.doi.org/10.1561/2300000021.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.
doi: http://dx.doi.org/10.1561/2300000021.

183

http://dx.doi.org/10.1561/2300000021

Sandra Devin and Rachid Alami. An implemented theory of mind to improve
human-robot shared plans execution. In International Conference on Human
Robot Interation (HRI), pages 319–326, 2016. doi: http://dx.doi.org/10.1109/
HRI.2016.7451768.

Y.Z. Du, D. Hsu, H. Kurniawati, W.S. Lee, S.C.W. Ong, and S.W. Png. A
pomdp approach to robot motion planning under uncertainty. In Int. Conf.
on Automated Planning and Scheduling, Workshop on Solving Real-World
POMDP Problems, 2010.

H. Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. Robotics Automation Magazine, 13(2):99–110, June 2006. ISSN 1070-
9932. doi: 10.1109/MRA.2006.1638022.

Tom Erez and William D. Smart. A scalable method for solving high-
dimensional continuous pomdps using local approximation. In Conf. on Un-
certainty in Artificial Intelligence, 2010.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6:503–556,
April 2005a.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. J. Mach. Learn. Res., 6:503–556, December 2005b.

William D. Fisher and M. Shahid Mujtaba. Hybrid position/force control: A
correct formulation. The International Journal of Robotics Research (IJRR),
11(4):299–311, 1992. doi: 10.1177/027836499201100403.

Héctor H. González-Baños and Jean-Claude Latombe. Navigation strategies for
exploring indoor environments. I. J. Robotic Research, 21(10-11):829–848,
2002. doi: http://dx.doi.org/10.1177/0278364902021010834.

Geoffrey J. Gordon. Stable function approximation in dynamic programming. In
International Conference on Machine Learning (ICML). Carnegie Mellon Uni-
versity, 1995. URL "http://www.cs.cmu.edu/~ggordon/ml95-stable-dp.

ps.gz".

G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. A tutorial on graph-
based slam. Intelligent Transportation Systems Magazine, 2(4):31–43, winter
2010. ISSN 1939-1390. doi: 10.1109/MITS.2010.939925.

I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42(6):1291–1307, Nov 2012a. doi: 10.1109/TSMCC.2012.2218595.

I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42(6):1291–1307, Nov 2012b. doi: 10.1109/TSMCC.2012.2218595.

Vijaykumar Gullapalli, Andrew G. Barto, and Roderic A. Grupen. Learning
admittance mappings for force-guided assembly. In International Conference
on Robotics and Automation (ICRA), pages 2633–2638, may 1994. doi: 10.
1109/ROBOT.1994.351117.

184

"http://www.cs.cmu.edu/~ggordon/ml95-stable-dp.ps.gz"
"http://www.cs.cmu.edu/~ggordon/ml95-stable-dp.ps.gz"

Bradley Hamner, Sanjiv Singh, and Sebastian Scherer. Learning obstacle avoid-
ance parameters from operator behavior. Field Robotics, 23(11/12):1037–
1058, December 2006.

Kris Hauser. Algorithmic Foundations of Robotics IX: Selected Contribu-
tions of the Ninth International Workshop on the Algorithmic Founda-
tions of Robotics, chapter Randomized Belief-Space Replanning in Partially-
Observable Continuous Spaces, pages 193–209. 2011. doi: http://dx.doi.org/
10.1007/978-3-642-17452-0 12.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. 2015. URL https://www.aaai.org/ocs/index.php/FSS/

FSS15/paper/view/11673.

Ruijie He, S. Prentice, and N. Roy. Planning in information space for a
quadrotor helicopter in a gps-denied environment. In International Confer-
ence on Robotics and Automation (ICRA), pages 1814–1820, May 2008. doi:
10.1109/ROBOT.2008.4543471.

P. Hebert, T. Howard, N. Hudson, J. Ma, and J.W. Burdick. The next best
touch for model-based localization. In International Conference on Robotics
and Automation (ICRA), pages 99–106, May 2013. doi: 10.1109/ICRA.2013.
6630562.

J. Hoffman, M. Spranger, D. Gohring, and M. Jungel. Making use of what
you don’t see: negative information in markov localization. In International
Conference on Intelligent Robots and Systems (IROS), pages 2947–2952, Aug
2005. doi: http://dx.doi.org/10.1109/IROS.2005.1545087.

J. Hoffmann, M. Spranger, D. Gohring, M. Jungel, and Hans-Dieter Burkhard.
Further studies on the use of negative information in mobile robot localization.
In International Conference on Robotics and Automation (ICRA), pages 62–
67, May 2006. doi: http://dx.doi.org/10.1109/ROBOT.2006.1641162.

G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. S. Sukhatme.
Uncertainty-driven view planning for underwater inspection. In International
Conference on Robotics and Automation (ICRA), pages 4884–4891, May 2012.
doi: http://dx.doi.org/10.1109/ICRA.2012.6224726.

K. Hsiao, L. Kaelbling, and T. Lozano-Perez. Task-driven tactile exploration.
In Robotics Science and Systems (RSS), Zaragoza, Spain, June 2010. doi:
http://dx.doi.org/10.15607/RSS.2010.VI.029.

Yifeng Huang and K. Gupta. Rrt-slam for motion planning with motion and
map uncertainty for robot exploration. In Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, pages 1077–1082,
Sept 2008. doi: http://dx.doi.org/10.1109/IROS.2008.4651183.

M.F. Huber, Tim Bailey, H. Durrant-Whyte, and U.D. Hanebeck. On entropy
approximation for gaussian mixture random vectors. In Multisensor Fusion
and Integration, pages 181–188, 2008.

Tina Iachini, Gennaro Ruggiero, and Francesco Ruotolo. Does blindness affect
egocentric and allocentric frames of reference in small and large scale spaces?
Behavioural Brain Research, 273(0):73 – 81, 2014. ISSN 0166-4328. doi: http:
//dx.doi.org/10.1016/j.bbr.2014.07.032. URL http://www.sciencedirect.

com/science/article/pii/S0166432814004811.

185

https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://www.sciencedirect.com/science/article/pii/S0166432814004811
http://www.sciencedirect.com/science/article/pii/S0166432814004811

Shervin Javdani, Matthew Klingensmith, Drew Bagnell, Nancy S. Pollard, and
Siddhartha S. Srinivasa. Efficient touch based localization through submod-
ularity. CoRR, 2012.

Matthew Johnson and et. al. Team ihmc’s lessons learned from the darpa
robotics challenge trials. Journal of Field Robotics, 32(2):192–208, 2015. ISSN
1556-4967. doi: 10.1002/rob.21571. URL http://dx.doi.org/10.1002/rob.

21571.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artif.
Intell., 101(1-2):99–134, May 1998. URL http://dx.doi.org/10.1016/

S0004-3702(98)00023-X.

M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force con-
trol policies for compliant manipulation. In International Conference on
Intelligent Robots and Systems (ICRA), pages 4639–4644, Sept 2011. doi:
10.1109/IROS.2011.6095096.

Michael Kasper, Gernot Fricke, Katja Steuernagel, and Ewald von Puttkamer.
A behavior-based mobile robot architecture for learning from demonstration.
Robotics and Autonomous Systems, 34(2):153–164, February 2001.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4):566–580, Aug 1996.
doi: http://dx.doi.org/10.1109/70.508439.

H. J. Kim, Michael I. Jordan, Shankar Sastry, and Andrew Y.
Ng. Autonomous helicopter flight via reinforcement learning. In
Advances in Neural Information Processing Systems (NIPS), vol-
ume 16, pages 799–806. 2004. URL http://papers.nips.cc/paper/

2455-autonomous-helicopter-flight-via-reinforcement-learning.

pdf.

J. Kober and J. Peters. Learning motor primitives for robotics. In International
Conference on Robotics and Automation (ICRA), pages 2112–2118, May 2009.
doi: 10.1109/ROBOT.2009.5152577.

J. Kober, J. Andrew (Drew) Bagnell, and J. Peters. Reinforcement learning in
robotics: A survey. International Journal of Robotics Research (IJRR), July
2013.

Thomas Kollar and Nicholas Roy. Efficient optimization of information-theoretic
exploration in slam. In National Conference on Artificial Intelligence (AAAI),
volume 3, pages 1369–1375, 2008. URL http://dl.acm.org/citation.cfm?

id=1620270.1620287.

Seung kook Yun. Compliant manipulation for peg-in-hole: Is passive compliance
a key to learn contact motion? In International Conference on Robotics and
Automation (ICRA), pages 1647–1652, May 2008. doi: 10.1109/ROBOT.
2008.4543437.

P. Kormushev, S. Calinon, and D. G. Caldwell. Robot motor skill coordination
with EM-based reinforcement learning. In International Conference on Intel-
ligent Robots and Systems (IROS), pages 3232–3237, Taipei, Taiwan, October
2010a.

186

http://dx.doi.org/10.1002/rob.21571
http://dx.doi.org/10.1002/rob.21571
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://papers.nips.cc/paper/2455-autonomous-helicopter-flight-via-reinforcement-learning.pdf
http://papers.nips.cc/paper/2455-autonomous-helicopter-flight-via-reinforcement-learning.pdf
http://papers.nips.cc/paper/2455-autonomous-helicopter-flight-via-reinforcement-learning.pdf
http://dl.acm.org/citation.cfm?id=1620270.1620287
http://dl.acm.org/citation.cfm?id=1620270.1620287

P. Kormushev, S. Calinon, R. Saegusa, and G. Metta. Learning the skill of
archery by a humanoid robot icub. In International Conference on Humanoid
Robots (Humanoids), pages 417–423, Dec 2010b. doi: 10.1109/ICHR.2010.
5686841.

K. Kronander. Control and learning of compliant manipulation skills, 2015.

K. Kronander and A. Billard. Online learning of varying stiffness through
physical human-robot interaction. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 1842–1849, May 2012. doi:
10.1109/ICRA.2012.6224877.

Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces. In In
Proc. Robotics: Science and Systems, 2008.

S. Lange and M. Riedmiller. Deep auto-encoder neural networks in rein-
forcement learning. In International Joint Conference on Neural Networks
(IJCNN), pages 1–8, July 2010.

Pamela Banta Lavenexa, Valérie Boujonb, Angélique Ndarugendamwob, and
Pierre Lavenexa. Human short-term spatial memory: Precision predicts ca-
pacity. Cognitive Psychology, 77:1–19, 2015.

Alan M. Leslie. ToMM,ToBY, and Agency: Core architecture and domain speci-
ficity. 1994.

Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasping
under shape uncertainty. Robotics and Autonomous Systems (RAS), 75, Part
B:352 – 364, 2016. doi: http://dx.doi.org/10.1016/j.robot.2015.09.008.

Xin Li, William K. Cheung, and Jiming Liu. Improving POMDP Tractability
via Belief Compression and Clustering. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 40(1):125–136, February 2010. doi:
http://dx.doi.org/10.1109/tsmcb.2009.2021573.

Georgios Lidoris. State Estimation, Planning, and Behavior Selection Under
Uncertainty for Autonomous Robotic Exploration in Dynamic Environments.
kassel university press GmbH, Kassel University, 2011.

Yong Lin, Xingjia Lu, and Fillia Makedon. Approximate planning in pomdps via
MDP heuristic. In International Joint Conference on Neural Networks (2014),
pages 1304–1309, 2014. doi: http://dx.doi.org/10.1109/IJCNN.2014.6889576.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning
policies for partially observable environments: Scaling up. In International
Conference on Machine Learning (ICML), 1995.

Jose Ramon Medina, Dominik Sieber, and Sandra Hirche. Risk-sensitive in-
teraction control in uncertain manipulation tasks. In ICRA, pages 502–507,
2013.

W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,
E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B. Rusu,
B. Marthi, G. Bradski, K. Konolige, B. Gerkey, and E. Berger. Autonomous
door opening and plugging in with a personal robot. In International Con-
ference on Robotics and Automation (ICRA), pages 729–736, May 2010. doi:
10.1109/ROBOT.2010.5509556.

187

George Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information, 1956. URL http://cogprints.org/

730/.

Volodymyr Mnih. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529–533, 02 2015. doi: http://dx.doi.org/10.1038/
nature14236.

M. Montemerlo and S. Thrun. Simultaneous localization and mapping with
unknown data association using fastslam. In International Conference on
Robotics and Automation (ICRA), volume 2, pages 1985–1991 vol.2, Sept
2003. doi: 10.1109/ROBOT.2003.1241885.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
slam 2.0: An improved particle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges. In International Conference on
Artificial Intelligence (IJCAI), pages 1151–1156, 2003.

B. Nemec, F. J. Abu-Dakka, B. Ridge, A. Ude, J. A. Jorgensen, T. R.
Savarimuthu, J. Jouffroy, H. G. Petersen, and N. Krüger. Transfer of as-
sembly operations to new workpiece poses by adaptation to the desired force
profile. In 16th International Conference on Advanced Robotics (ICAR), pages
1–7, Nov 2013. doi: http://dx.doi.org/10.1109/ICAR.2013.6766568.

G. Neumann and J. Peters. Fitted q-iteration by advantage weighted regression.
In Advances in Neural Information Processing Systems (NIPS), volume 21,
pages 1177–1184, June 2009a.

Gerhard Neumann and Jan R. Peters. Fitted q-iteration by advantage weighted
regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems (NIPS), volume 21, pages
1177–1184. 2009b.

Andrew Y. Ng and Michael Jordan. Pegasus: A policy search method for large
mdps and pomdps. In Conference on Uncertainty in Artificial Intelligence
(UAI), UAI’00, pages 406–415, 2000. URL http://dl.acm.org/citation.

cfm?id=2073946.2073994.

A. Nowé, P. Vrancx, and Y-M. De Hauwere. Reinforcement Learning:
State-of-the-Art, chapter Game Theory and Multi-agent Reinforcement
Learning, pages 441–470. 2012. URL http://www.springer.com/

engineering/computational+intelligence+and+complexity/book/

978-3-642-27644-6.

J. Nunez-Varela, B. Ravindran, and J. L. Wyatt. Where do i look now? gaze
allocation during visually guided manipulation. In International Conference
on Robotics and Automation (ICRA), pages 4444–4449, May 2012. doi: http:
//dx.doi.org/10.1109/ICRA.2012.6225226.

D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in average-cost
problems. IEEE Transactions on Automatic Control, 47(10):1624–1636, Oct
2002. doi: 10.1109/TAC.2002.803530.

Hyeonjun Park, Ji-Hun Bae, Jae-Han Park, Moon-Hong Baeg, and Jaeheung
Park. Intuitive peg-in-hole assembly strategy with a compliant manipulator.
In International Symposium on Robotics (ISR), pages 1–5, Oct 2013. doi:
http://dx.doi.org/10.1109/ISR.2013.6695699.

188

http://cogprints.org/730/
http://cogprints.org/730/
http://dl.acm.org/citation.cfm?id=2073946.2073994
http://dl.acm.org/citation.cfm?id=2073946.2073994
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-27644-6
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-27644-6
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-27644-6

Achille Pasqualotto, Mary Jane Spiller, Ashok S. Jansari, and Michael J. Proulx.
Visual experience facilitates allocentric spatial representation. Behavioural
Brain Research, 236(0):175 – 179, 2013. ISSN 0166-4328. doi: http://dx.
doi.org/10.1016/j.bbr.2012.08.042. URL http://www.sciencedirect.com/

science/article/pii/S0166432812005682.

P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adap-
tation based on previous sensor experiences. In International Conference
on Intelligent Robots and Systems (IROS), pages 365–371, Sept 2011. doi:
10.1109/IROS.2011.6095059.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–
1190, mar 2008a. doi: http://dx.doi.org/10.1016/j.neucom.2007.11.026.

Jan Peters and Stefan Schaal. Natural actor-critic. European Symposium on
Artificial Neural Networks, 71(7-9):1180–1190, 2008b. doi: http://dx.doi.
org/10.1016/j.neucom.2007.11.026. URL http://www.sciencedirect.com/

science/article/pii/S0925231208000532.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. URL
http://www2.imm.dtu.dk/pubdb/p.php?3274. Version 20121115.

Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Point-based value iter-
ation: An anytime algorithm for pomdps. In International Joint Conference
on Artificial Intelligence (IJCAI), pages 1025 – 1032, August 2003.

Christian Plagemann, Kristian Kersting, Patrick Pfaff, and Wolfram Burgard.
Gaussian beam processes: A nonparametric bayesian measurement model for
range finders. In In Proc. of Robotics: Science and Systems (RSS), 2007.

R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake. Non-gaussian belief
space planning: Correctness and complexity. In International Conference on
Robotics and Automation (ICRA), pages 4711–4717, May 2012. doi: 10.1109/
ICRA.2012.6225223.

Robert Platt, Russell Tedrake, Leslie Kaelbling, and Tomás Lozano-Pérez. Be-
lief space planning assuming maximum likelihood observations. In Robotics
Science and Systems Conference (RSS), 2010. URL http://groups.csail.

mit.edu/robotics-center/public_papers/Platt10.pdf.

Josep M. Porta, Nikos Vlassis, Matthijs T. J. Spaan, and Pascal Poupart. Point-
based value iteration for continuous pomdps. Journal of machine learning
research, 7:2329–2367, 2006.

S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space
by factoring the covariance. International Journal of Robotics Research, 8
(11-12):1448–1465, December 2009.

Kerstin Preuschoff, Peter NC Mohr, and Ming Hsu. Decision making under
uncertainty. Frontiers in Neuroscience, 7(218), 2013. doi: 10.3389/fnins.
2013.00218.

Akshara Rai, Guillaume De Chambrier, and Aude Billard. Learning from failed
demonstrations in unreliable systems. In International Conference on Hu-
manoid Robots (Humanoids), pages 410–416, 2013.

Edward J. Sondik Richard D. Smallwood. The optimal control of partially
observable markov processes over a finite horizon. Oper. Res., 21(5):1071–
1088, October 1973. URL http://dx.doi.org/10.1287/opre.21.5.1071.

189

http://www.sciencedirect.com/science/article/pii/S0166432812005682
http://www.sciencedirect.com/science/article/pii/S0166432812005682
http://www.sciencedirect.com/science/article/pii/S0925231208000532
http://www.sciencedirect.com/science/article/pii/S0925231208000532
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://groups.csail.mit.edu/robotics-center/public_papers/Platt10.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Platt10.pdf
http://dx.doi.org/10.1287/opre.21.5.1071

Hilary Richardson, Chris Bake, Joshua. Tenenbaum, and Rebecca Saxe. The
development of joint belief-desire inferences. Cognitive Science Socitety, 2012.

Martin Riedmiller. Neural Fitted Q Iteration - First Experiences with a Data
Efficient Neural Reinforcement Learning Method, pages 317–328. 2005. doi:
10.1007/11564096 32. URL http://dx.doi.org/10.1007/11564096_32.

Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. On-
line planning algorithms for pomdps. Journal Artifcial Intelligence Re-
search, 32(1):663–704, jul 2008. URL http://dl.acm.org/citation.cfm?

id=1622673.1622690.

N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation-mobile robot
navigation with uncertainty in dynamic environments. In IEEE International
Conference on Robotics and Automation, pages 35–40, 1999.

Nicholas Roy. Finding Approximate POMDP solutions Through Belief Com-
pression. Journal of Artificial Intelligence Research, 23, 2005. doi: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.6180.

Nicholas Roy and Geoffrey J Gordon. Exponential family pca for belief
compression in pomdps. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems (NIPS), volume 15,
pages 1667–1674. MIT Press, 2003a. URL http://papers.nips.cc/paper/

2319-exponential-family-pca-for-belief-compression-in-pomdps.

pdf.

Nicholas Roy and Geoffrey J Gordon. Exponential family pca for belief
compression in pomdps. In Advances in Neural Information Processing
Systems 15, pages 1667–1674. 2003b. URL http://papers.nips.cc/paper/

2319-exponential-family-pca-for-belief-compression-in-pomdps.

pdf.

Nicholas Roy and Sebastian Thrun. Coastal navigation with mobile robots. In
Advances in Neural Processing Systems (NIPS), volume 12, pages 1043–1049,
1999.

Brian Scassellati. Theory of mind for a humanoid robot. Auton. Robots, 12(1):
13–24, January 2002. doi: http://dx.doi.org/10.1023/A:1013298507114.

Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning move-
ment primitives. In 11th International Symposium on Robotics Research
(ISRR), 2004. doi: http://dx.doi.org/10.1007/11008941 60. URL http:

//www-clmc.usc.edu/publications/S/schaal-ISRR2003.pdf.

Ross D. Shachter. Bayes-ball: Rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams). In Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 480–487, 1998.
URL http://dl.acm.org/citation.cfm?id=2074094.2074151.

David Silver, J. Andrew Bagnell, and Anthony Stentz. Learning from demon-
stration for autonomous navigation in complex unstructured terrain. IJRR,
29(12):1565–1592, October 2010.

Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps.
In Conference on Uncertainty in Artificial Intelligence (UAI), pages 520–527,
Arlington, Virginia, United States, 2004. AUAI Press.

190

http://dx.doi.org/10.1007/11564096_32
http://dl.acm.org/citation.cfm?id=1622673.1622690
http://dl.acm.org/citation.cfm?id=1622673.1622690
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://papers.nips.cc/paper/2319-exponential-family-pca-for-belief-compression-in-pomdps.pdf
http://www-clmc.usc.edu/publications/S/schaal-ISRR2003.pdf
http://www-clmc.usc.edu/publications/S/schaal-ISRR2003.pdf
http://dl.acm.org/citation.cfm?id=2074094.2074151

Trey Smith and Reid G. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. CoRR, abs/1207.1412, 2012. URL http://

arxiv.org/abs/1207.1412.

Beate Sodian and Susanne Kristen. Theory of mind. In Towards a The-
ory of Thinking, pages 189–201. 2010. doi: http://dx.doi.org/10.1007/
978-3-642-03129-8 13.

Matthijs T. J. Spaan and Nikos Vlassis. Planning with continuous actions in
partially observable environments. In International Conference on Robotics
and Automation (ICRA), pages 3469–3474, 2005.

C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based explo-
ration using rao-blackwellized particle filters. In Robotics Science and Systems
(RSS), 2005.

B.J. Stankiewicz, G.E. Legge, J.S. Mansfield, and E.J. Schlicht. Lost in virtual
space: Studies in human and ideal spatial navigation. Journal of Experimental
Psychology: Human Perception and Performance.(under review), 32(3):688–
704, 2006.

F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal.
Learning motion primitive goals for robust manipulation. In International
Conference on Intelligent Robots and Systems (IROS), pages 325–331, Sept
2011. doi: 10.1109/IROS.2011.6094877.

F. Stulp, E. A. Theodorou, and S. Schaal. Reinforcement learning with se-
quences of motion primitives for robust manipulation. IEEE Transactions on
Robotics, 28(6):1360–1370, Dec 2012. doi: http://dx.doi.org/10.1109/TRO.
2012.2210294.

Wen Sun and R. Alterovitz. Motion planning under uncertainty for medical
needle steering using optimization in belief space. In International Conference
on Intelligent Robots and Systems (IROS), pages 1775–1781, Sept 2014. doi:
http://dx.doi.org/10.1109/IROS.2014.6942795.

H.G Sung. Gaussian Mixture Regression and Classification. PhD thesis, Rice
University, 2004.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998a. URL http://www.cs.ualberta.ca/%7Esutton/

book/ebook/the-book.html.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems (NIPS), volume 12,
pages 1057–1063. MIT Press, 2000.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume
116. 1998b.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers, 2010. URL http://dx.doi.org/10.2200/

S00268ED1V01Y201005AIM009.

Sebastian Thrun. Monte carlo POMDPs. In Advances in Neural Information
Processing Systems (NIPS), pages 1064–1070, 2000.

191

http://arxiv.org/abs/1207.1412
http://arxiv.org/abs/1207.1412
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://dx.doi.org/10.2200/S00268ED1V01Y201005AIM009
http://dx.doi.org/10.2200/S00268ED1V01Y201005AIM009

Sebastian Thrun. Particle filters in robotics. In Annual Conference on Uncer-
tainty in AI (UAI, volume 17, 2002.

Sebastian Thrun and Arno Bü. Integrating grid-based and topological maps
for mobile robot navigation. In National Conference on Artificial Intelli-
gence (AAAI), volume 2, pages 944–950, 1996. URL http://dl.acm.org/

citation.cfm?id=1864519.1864527.

Sebastian Thrun and John J. Leonard. Simultaneous localization and mapping.
In Springer Handbook of Robotics, pages 871–889. 2008. doi: http://dx.doi.
org/10.1007/978-3-540-30301-5 38.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents). The MIT Press, 2005a.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents). The MIT Press, Cambridge, MA,
2005b.

R. Valencia, J.V. Miro, G. Dissanayake, and J. Andrade-Cetto. Active pose
slam. In International Conference on Intelligent Robots and Systems (IROS),
pages 1885–1891, Oct 2012. doi: http://dx.doi.org/10.1109/IROS.2012.
6385637.

Joan Vallve and Juan Andrade-Cetto. Dense entropy decrease estimation for
mobile robot exploration. In International Conference on Robotics and Au-
tomation (ICRA), pages 6083–6089, 2014. doi: http://dx.doi.org/10.1109/
ICRA.2014.6907755.

Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information.
Int. J. Rob. Res., 30(7):895–913, June 2011. doi: http://dx.doi.org/10.1177/
0278364911406562.

Jur van den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under
uncertainty using iterative local optimization in belief space. International
Journal of Robotics Research (IJRR), 31(11):1263–1278, 2012. doi: http:
//dx.doi.org/10.1177/0278364912456319.

Tiago S. Veiga, Matthijs T. J. Spaan, and Pedro U. Lima. Point-based POMDP
solving with factored value function approximation. In Conference on Artifi-
cial Intelligence (AAAI), volume 28, pages 2512–2518, 2014.

Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, 2007.

N. A. Vien and M. Toussaint. Pomdp manipulation via trajectory optimization.
In International Conference on Intelligent Robots and Systems (IROS), pages
242–249, Sept 2015a.

N. A. Vien and M. Toussaint. Pomdp manipulation via trajectory optimization.
In International Conference on Intelligent Robots and Systems (IROS), pages
242–249, Sept 2015b. doi: 10.1109/IROS.2015.7353381.

Sethu Vijayakumar, Tomohiro Shibata, and Stefan Schaal. Reinforcement learn-
ing for humanoid robotics. In Autonomous Robot, page 2002, 2003.

192

http://dl.acm.org/citation.cfm?id=1864519.1864527
http://dl.acm.org/citation.cfm?id=1864519.1864527

John Von Neumann and O. Morgenstern. The theory of games and economic
behavior. Princeton, 3 edition, 1990.

Jiexin Wang, Eiji Uchibe, and Kenji Doya. Em-based policy hyper pa-
rameter exploration: application to standing and balancing of a two-
wheeled smartphone robot. Artificial Life and Robotics, 21(1):125–131,
2016. doi: 10.1007/s10015-015-0260-7. URL http://dx.doi.org/10.1007/

s10015-015-0260-7.

R. Frances Wang. Spatial updating. Scholarpedia, 2(10):3839, 2007.

Ranxiao Frances Wang and Elizabeth Spelke. Updating egocentric represen-
tations in human navigation. Cognition, 77(12):215 – 250, 2000. URL
http://www.wjh.harvard.edu/~lds/pdfs/wang2000.pdf.

Marco Wiering and Martijn van Otterio. Reinforcement Learning State-of-the-
Art. Springer-Verlag Berlin Heidelberg, 2012.

Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256, 1992. doi:
http://dx.doi.org/10.1007/BF00992696.

David A. Winter. Biomechanics and motor control of human movement. 2009.

Thomas Wolbers and Mary Hegarty. What determines our navigational abil-
ities? Trends in Cognitive Sciences, 14(3):138 – 146, 2010. ISSN 1364-
6613. doi: http://dx.doi.org/10.1016/j.tics.2010.01.001. URL http://www.

sciencedirect.com/science/article/pii/S1364661310000021.

Thomas Wolbers, Mary Hegarty, Christian Buchel, and Jack M Loomis. Spa-
tial updating: how the brain keeps track of changing object locations during
observer motion. Nature Neuroscience, 1124(1), 2008. ISSN 1097-6256. doi:
http://dx.doi.org/10.1038/nn.2189. URL http://www.nature.com/neuro/

journal/v11/n10/suppinfo/nn.2189_S1.html.

Yang Yang, Linglong Lin, Y. T. Song, Bojan Nemec, Ales Ude, Anders Glent
Buch, Norbert Kruger, and Thiusius Rajeeth Savarimuthu. Fast programming
of peg-in-hole actions by human demonstration, pages 990–995. 2014. doi:
10.1109/ICMC.2014.7231702.

T. Zhao, G. Niu, N. Xie, J. Yang, and M. Sugiyama. Regularized policy gradi-
ents: Direct variance reduction in policy gradient estimation. In Proceedings
of the Fourth Asian Conference on Machine Learning (ACML), volume 45 of
JMLR Workshop and Conference Proceedings, pages 333–348, Nov 2015.

C. Zito, M. S. Kopicki, R. Stolkin, C. Borst, F. Schmidt, M. A. Roa, and J. L.
Wyatt. Sequential trajectory re-planning with tactile information gain for
dexterous grasping under object-pose uncertainty. In International Confer-
ence on Intelligent Robots and Systems (IROS), pages 4013–4020, Nov 2013.
doi: http://dx.doi.org/10.1109/IROS.2013.6696930.

193

http://dx.doi.org/10.1007/s10015-015-0260-7
http://dx.doi.org/10.1007/s10015-015-0260-7
http://www.wjh.harvard.edu/~lds/pdfs/wang2000.pdf
http://www.sciencedirect.com/science/article/pii/S1364661310000021
http://www.sciencedirect.com/science/article/pii/S1364661310000021
http://www.nature.com/neuro/journal/v11/n10/suppinfo/nn.2189_S1.html
http://www.nature.com/neuro/journal/v11/n10/suppinfo/nn.2189_S1.html

Guillaume de Chambrier
Avenue de la Gare 3 – 1020 Renens – Switzerland • Born 29.06.1987

079 822 76 35 • guillaume.dechambrier@epf .ch
http://lasa.epf .ch/people/member.php?SCIPER=213946.com • Swiss and British

With several independent projects, I am expert in developing and applying machine learning techniques to robot
systems and I poses meticulous strong analytical skills.

Education
PhD in Manufacturing Systems & Robotics École polytechnique fédérale de Lausanne, Switzerland

Thesis: Learning Search Strategies from Human Demonstrations
supervisor: Prof Aude Billard

2012 - 31.08.2016

First class Master of Informatics with Honours Informatics University of Edinburgh, UK
Thesis: Statistical Analysis of DNA Methylation Prof le 2006 - 2011

Erasmus Exchange, Bachelor Universität des Saarlandes, Germany
2008 - 2009

Experience
Teaching Assistant École polytechnique fédérale de Lausanne

Course: Applied Machine Learning (Master) 2012-present

European Project École polytechnique fédérale de Lausanne
Flexible Skill and Intuitive Robot Tasking 2012-2013

Technical Skills
Programming: C/C++, Python, Java, MATLAB
Expertise: Robotics, Reinforcement Learning, Non-parametric Bayesian inference, Machine learning & Computer
Vision

Languages
French, English (f rst language)

Awards and Certif cation
2010: Google Prize: Best Phase 1 Project in Master of Informatics Programme

Conference Oral Presentations
de Chambrier G,et al: (Oct. 2013). Learning from Failed Demonstrations in Unreliable Systems. IEEE-RAS
International Conference on Humanoid Robots, Atlanta, US.
de Chambrier G,et al: (Dec. 2013). Learning search behaviour from humans. IEEE-Robotics and Biomimetics
(ROBIO), Shenzhen, CN.
de Chambrier G,et al: (Jun. 2014). Learning search policies from humans in a partially observable context.
Journal of Robotics and Biomimetics. 1:8

194

	Introduction
	Motivation
	Contribution
	Learning to reason with uncertainty as humans
	Reinforcement learning in belief space
	Non-parametric Bayesian state space filter

	Thesis outline

	Background
	Decisions under uncertainty
	Decision theory

	Sequential decision making
	POMDP

	Literature review
	Value Iteration
	Policy search
	Planning
	Heuristics
	Summary: literature

	Approach

	Learning to reason with uncertainty as humans
	Outline
	Background
	Spatial navigation
	Human beliefs
	Programming by demonstration & uncertainty

	Experiment: table search
	Formulation
	Policies
	Modelling human search strategies
	Coastal Navigation
	Control

	Results and discussion
	Search & behaviour analysis
	GMM & Coastal Navigation policy analysis
	Distance efficiency & Uncertainty

	Conclusions

	Peg in hole
	Outline
	Background
	Peg-in-hole
	Actor-Critic & Fitted Reinforcement Learning

	Experiment methods
	Participants and experiment protocol

	Learning Actor and Critic
	Actor & Critic
	Fitted policy evaluation and improvement

	Control architecture
	Robot Implementation

	Results
	Distance taken to reach the socket's edge (Qualitative)
	Distance taken to reach the socket's edge (Quantitative)
	Importance of data
	Generalisation
	Distance taken to connect the plug to the socket

	Discussion & Conclusion

	Non-parametric Bayesian State Space Estimator
	Outline
	Background
	SLAM
	Active-SLAM & Exploration

	Bayesian State Space Estimation
	Measurement Likelihood Memory Filter
	Evidence and marginals
	MLMF-SLAM Algorithm
	Space & time complexity
	Scalable extension to multiple objects

	Evaluation
	Evaluation of time complexity
	Evaluation of the independence assumption
	Evaluation of memory

	Conclusion

	Conclusion and summary
	Main Contributions
	Limitations and Future Work
	Final Words

	Appendices
	Appendix Peg in hole
	Time to connect socket
	EM policy search
	Q-EM for GMM
	Unbiased estimator

	Appendix Non-parametric Bayesian State Space Estimator
	Probabilities
	Bayesian filtering recursion
	Recursion example
	Derivation of the evidence
	Derivation of the marginal

	References

